背景 众所周知,Haskell语言是一门函数式编程语言.函数式编程语言的一大特点就是数值和对象都是不可变的,而这与经常需要对状态目前的值进行修改的动态规划算法似乎有些"格格不入",本文对几乎可以说是动态规划的最简单特例:斐波那契数列的求解提出几种算法(不包括矩阵快速幂优化.Monad和通项公式计算),探讨一下函数式编程如何结合动态规划. 自底向上写法 算法1: f' 1 _ b = b f' n a b = f' (n - 1) b (a + b) f n = f' n 0 1 尾递归…
斐波那契数列就是黄金分割数列 第一项加第二项等于第三项,以此类推 第二项加第三项等于第四项 代码如下 这一段代码实现fib(n)函数返回第n项,PrintFN(m,n,i)函数实现输出第i项斐波那契数列,输出在m到n之间的斐波那契数的数量 def fib(n) : x = 0 x1 = 1 x2 = 1 i = 2 while i <= n : i = i + 1 x =x1 + x2 x1 = x2 x2 =…
递归.递推计算斐波那契数列第n项的值: #include <stdio.h> long long fact(int n); //[递推]计算波那契数列第n个数 long long fact2(int n);//[递归] int main(int argc, char *argv[]) { ; ) { printf("%d %I64d %I64d\n",i,fact(i),fact2(i)); i++; } ; } long long fact(int n) //[递推]计算…
https://www.cnblogs.com/wolfshining/p/7662453.html 斐波那契数列即著名的兔子数列:1.1.2.3.5.8.13.21.34.…… 数列特点:该数列从第三项开始,每个数的值为其前两个数之和,用python实现起来很简单: a=0 b=1 while b < 1000: print(b) a, b = b, a+b 输出结果: 这里 a, b = b, a+b 右边的表达式会在赋值变动之前执行,即先执行右边,比如第一次循环得到b-->1,a+b -…
斐波那契数列即著名的兔子数列:1.1.2.3.5.8.13.21.34.…… 数列特点:该数列从第三项开始,每个数的值为其前两个数之和,用python实现起来很简单: a=0 b=1 while b < 1000: print(b) a, b = b, a+b 输出结果: 这里 a, b = b, a+b 右边的表达式会在赋值变动之前执行,即先执行右边,比如第一次循环得到b-->1,a+b --> 0+1 然后再执行赋值 a,b =1,0+1,所以执行完这条后a=1,b=1 a=0 b=…