【模板】NTT】的更多相关文章

NTT裸模板,没什么好解释的 这种高深算法其实也没那么必要知道原理 #include <cstdio> #include <cstring> #include <algorithm> #define N (1<<17)+10 #define ll long long using namespace std; ll inv3,invl; int r[N]; ll A[N],B[N],C[N],mulwn[N],invwn[N]; char s1[N],s2[N…
传送门:hihocoder #1388 : Periodic Signal 先来几个大牛传送门:  (模板) NTT long long 版 解法一:因为我们知道FFT会精度不够,所以坚持用NTT,但是模数不够大,然后就一直GG,看来我们的搜索姿势也有问题,居然没有搜到上面大神的板子,真的是GG http://www.cnblogs.com/WABoss/p/5903927.html /*******************************************************…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
NTT(快速数论变换)用到的各种素数及原根: https://blog.csdn.net/hnust_xx/article/details/76572828 NTT多项式乘法模板 #include<cstdio> #include<iostream> #include<algorithm> using namespace std; typedef long long LL; ; //119*2^23+1 g=3 <<)+; ; int rev[N]; LL…
题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg_{i-j}+\sum_{j=mid+1}^rf_jg_{i-j}\] 复杂度\(O(n\log^2n)\). 分治思路见:https://www.cnblogs.com/SovietPower/p/9366763.html 多项式求逆做法先坑着. //693ms 4.91MB #include <…
题目背景 模板题,无背景 题目描述 给定 22 个多项式 F(x), G(x)F(x),G(x) ,请求出 F(x) * G(x)F(x)∗G(x) . 系数对 pp 取模,且不保证 pp 可以分解成 p = a \cdot 2^k + 1p=a⋅2k+1 之形式. 输入输出格式 输入格式: 输入共 33 行.第一行 33 个整数 n, m, pn,m,p ,分别表示 F(x), G(x)F(x),G(x) 的次数以及模数 pp .第二行为 n+1n+1 个整数, 第 ii 个整数 a_iai​…
题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 1 2 1 2 1 2 1 输出样例#1: 1 4 5 2 说明 保证输入中的系数大于等于 0 且小于等于9.…
NTT模板 #include<bits/stdc++.h> using namespace std; #define LL long long const int MAXL=22; const int MAXN=1<<MAXL; const int Mod=998244353; int rev[MAXN],A[MAXN],B[MAXN],C[MAXN]; int fast_pow(int a,int b){ int ans=1; while(b){ if(b&1)ans=1…
网上相关博客不少,这里给自己留个带点注释的模板,以后要是忘了作提醒用. 以洛谷3803多项式乘法裸题为例. FFT: #include <cstdio> #include <cmath> #include <cctype> #include <algorithm> #define ri readint() #define gc getchar() int readint() { , s = , c = gc; ) c = gc; , c = gc; + c…
自己整理出来的模板 存在的问题: 1.多项式求逆常数过大(尤其是浮点数FFT) 2.log只支持f[0]=1的情况,exp只支持f[0]=0的情况 有待进一步修改和完善 FFT: #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef double db; ); ,M=1e6+,mod=; int n,m,n2,a[N]; int Pow(int x,int p) { ; ,x=(ll)x*x%mod…
之前写过FFT的笔记. 我们知道FFT是在复数域上进行的变换. 而且经过数学家的证明, DFT是复数域上唯一满足循环卷积性质的变换. 而我们在OI中, 经常遇到对xxxx取模的题目, 这就启发我们可不可以在模运算的意义下找一个这样的变换. 然后我们发现有个神奇的东西, 原根\(g\), 这东西在模意义下相当于单位复根\(-e^{\frac{2\pi i}{n}}\). 所以我们预处理一下\(g\)的幂和逆元, 然后改一下fft的代码就出现了快速数论变换ntt 懒得写了 直接上代码: void g…
  进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(IFFT) 迭代实现 例题 「洛谷 P3803」「模板」多项式乘法(FFT) 题意简述 数据规模 快速数论变换(NTT) 原根 实现 NTT 模数 奇怪的模数 - 任意模数 NTT 三模 NTT 拆系数 FFT(MTT) 七次转五次 五次转四次 例题 「洛谷 P4245」「模板」任意模数 NTT 题意简述 数…
https://www.cnblogs.com/HocRiser/p/8207295.html 安利! 写NTT把i<<=1写成了i<<=2,又调了一年.发现我的日常就是数组开小调调调,变量名写错调调调,反向判if调调调,退役吧. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include&…
题目链接 三模数\(NTT\): 就是多模数\(NTT\)最后\(CRT\)一下...下面两篇讲的都挺明白的. https://blog.csdn.net/kscla/article/details/79547242 https://blog.csdn.net/zhouyuheng2003/article/details/85561887 模数不是\(NTT\)模数,考虑用多个\(NTT\)模数分别卷积,最后\(CRT\)合并(由中国剩余定理,同余方程组在模\(M=\prod m_i\)的情况下…
http://blog.miskcoo.com/2015/05/polynomial-inverse 好神啊! B(x)=B'(x)·(2-A(x)B'(x)) 注意ntt的时候防止项数溢出,即将多项式补零成n位后,相乘时次数最高的非零项不超过n次. upd:可以在点值表示下直接相乘.又好写又跑得快. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include&…
题目大意:给你两个多项式$f(x)$和$g(x)$以及一个模数$p(p\leqslant10^9)$,求$f*g\pmod p$ 题解:任意模数$NTT$,最大的数为$p^2\times\max\{n,m\}\leqslant10^{23}$,所以一般选$3$个模数即可,求出这三个模数下的答案,然后中国剩余定理即可. 假设这一位的答案是$x$,三个模数分别为$A,B,C$,那么: $$x\equiv x_1\pmod{A}\\x\equiv x_2\pmod{B}\\x\equiv x_3\pm…
题意:求多项式的逆 题解:多项式最高次项叫度deg,假设我们对于多项式\(A(x)*B(x)\equiv 1\),已知A,求B 假设度为n-1,\(A(x)*B(x)\equiv 1(mod x^{\lceil \frac{n}{2} \rceil})\),\(A(x)*B'(x)\equiv 1(mod x^{\lceil \frac{n}{2} \rceil})\) 两式相减得\(B(x)-B'(x)\equiv 0(mod x^{\lceil \frac{n}{2} \rceil})\),…
题解 可以计算每一项对后面几项的贡献,然后考虑后面每一项,发现这是一个卷积,直接暴力NTT就行了,发现它是一个有后效性的,我们选择使用CDQ分治. Tips:不能像通常CDQ分治一样直接 每次递归两边,然后处理.应该先递归左边,然后处理,再递归右边,保证右边的所有需要的转移已经被计算出来. 参考代码: #include<bits/stdc++.h> using namespace std; const int maxn = 1e5+10; const int p(998244353); int…
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q)\leq n-m\)的多项式\(Q(x)\),满足\[A(x)=D(x)\times Q(x)+R(x)\] 其中\(R(x)\)可以看做是\(m-1\)次多项式(不足\(m-1\)次系数补\(0\)). 首先是想消除\(R(x)\)的影响. 对于一个\(n\)次多项式\(A(x)\),记\[A^R(x)=…
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ x^n)\] \[f^2(x)g^2(x)-2f(x)g(x)+1\equiv 0\ (mod\ x^{2n})\] \[2f(x)g(x)-f^2(x)g^2(x)\equiv 1\ (mod\ x^{2n})\] \[2f(x)g(x)-f^2(x)g^2(x)\equiv f(x)g'(x)…
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\)成立的最小正整数\(n\)为\(a\)模\(p\)的阶,记作\(\delta_p(a)\). 例:\(\delta_7(2)=3\). 原根 设\(p\)是正整数,\(a\)是整数,若\(\delta_p(a)=\varphi(m)\),则称\(a\)为模\(p\)的一个原根. 从另一方面来说,若\(g…
这个题还有一些其他的做法,以后再补,先记一下三模数$NTT$的方法. 发现这个题不取模最大的答案不会超过$10^5 \times 10^9 \times 10^9 = 10^{23}$,也就是说我们可以取三个满足$NTT$性质的模数先算然后再合并起来. 比如三个模数可以分别取$998244353, 1004535809, 469762049$. 那么我们现在要做的就是合并三个同余方程: $$x \equiv a_1(\mod P_1)$$ $$x \equiv a_2(\mod P_2)$$ $…
https://www.luogu.org/problemnew/show/P4245 给两个多项式,求其乘积,每个系数对p取模. 参考: 代码与部分理解参考https://www.luogu.org/blog/yhzq/solution-p4245 NTT常用模数https://blog.csdn.net/hnust_xx/article/details/76572828 一些有关NTT讲解的东西. ———————————— NTT作用和DFT相同,只是NTT可以取模,且精度误差小. 我们的唯…
题目大意:$FFT$,给你两个多项式,请输出乘起来后的多项式. 题解:$FFT$,由于给的$n$不是很大,也可以用$NTT$做 卡点:无 C++ Code:  FFT: #include <cstdio> #include <cmath> using namespace std; const double Pi = acos(-1); int n, m; struct complex { double r, i; complex (double a = 0, double b =…
题目:https://www.luogu.org/problemnew/show/P4245 三模数NTT: 大概是用3个模数分别做一遍,用中国剩余定理合并. 前两个合并起来变成一个 long long 的模数,再要和第三个合并的话就爆 long long ,所以可以用一种让两个模数的乘积不出现的方法:https://blog.csdn.net/qq_35950004/article/details/79477797 x*m1+a1 = -y*m2 + a2  <==>  x*m1+y*m2…
Luogu4245 只要做三次的NTT,快的飞起 普通NTT,做9次 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define debug(...) fprintf(stderr,__VA_ARGS__) #define Debug(x) cout<<#x<<"="<<x<<endl u…
题目:https://www.luogu.org/problemnew/show/P4245 用三模数NTT做,需要注意时间和细节: 注意各种地方要取模!传入 upt() 里面的数一定要不超过2倍 mod! 乘法会爆 long long 时用快速乘! 两次合并的模数,第一次是 (ll) p1*p2,第二次直接对题目的模数取模即可! 注意局部开 (ll)! 合并时用到的逆元每次都一样,所以要先处理好而不是现场快速幂算!! 然而为什么时间还是 Narh 的两倍! 一晚上的心血... 代码如下: #i…
传送门 学习了一下大佬的->这里 已知多项式$A(x)$,若存在$A(x)B(x)\equiv 1\pmod{x^n}$ 则称$B(x)$为$A(x)$在模$x^n$下的逆元,记做$A^{-1}(x)$ 具体的来说的话,就是两个多项式$A,B$相乘模$x^n$之后,所有次数大于等于$n$的项都没了,那么只有在剩下的项相乘之后未知数项全被消掉只留下一个常数项$1$时,$B$才是$A$的逆元 然后为什么要有模$x^n$的限制呢?因为没有这个限制的话,$B$可能有无穷多项 然后我们考虑如何计算$B(x…
传送门 NTT好像是比FFT快了不少 然而感觉不是很看得懂……主要是点值转化为系数表示那里…… upd:大概已经搞明白是个什么玩意儿了……吧…… //minamoto #include<bits/stdc++.h> #define R register #define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i) #define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i) #define go(u) for(int…
题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F*G$,我可以把这两个多项式各分成两个多项式,一个表示$F_x/M$,一个表示$F_x$%$M$($M$是自己设定的阈值). 比如说$F=a*M+b,G=c*M+d$,那么$F*G=(a*M+b)*(c*M+d)=a*c*M^2+a*d*M+b*c*M+b*d$. 然后?就水过了啊…… 顺便提一下,…