R语言利用ROCR评测模型的预测能力 说明 受试者工作特征曲线(ROC),这是一种常用的二元分类系统性能展示图形,在曲线上分别标注了不同切点的真正率与假正率.我们通常会基于ROC曲线计算处于曲线下方的面积AUC(area under curve),并以此峰面积来衡量相应分类模型的性能. 操作 继续使用telecom churn数据集作为样例数据集 library(caret) data(churn) str(churnTrain) churnTrain = churnTrain[,!names(…
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业…
时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Long-term trend) : 时间序列可能相当稳定或随时间呈现某种趋势. 时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function). 2.季节性变动(Seasonal variation) 按时间变动,呈现重复性行为的序列…
目录 1.评估分类方法的性能 1.1 混淆矩阵 1.2 其他评价指标 1)Kappa统计量 2)灵敏度与特异性 3)精确度与回溯精确度 4)F度量 1.3 性能权衡可视化(ROC曲线) 2.评估未来的性能 2.1 保持法 2.2 交叉验证 2.3 自助法抽样 1.评估分类方法的性能 拥有能够度量实用性而不是原始准确度的模型性能评价方法是至关重要的. 3种数据类型评价分类器:真实的分类值:预测的分类值:预测的估计概率.之前的分类算法案例只用了前2种. 对于单一预测类别,可将predict函数设定为…
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是…
目录 1.调整模型参数来提高性能 1.1 创建简单的调整模型 2.2 定制调整参数 2.使用元学习来提高性能 2.1 集成学习(元学习)概述 2.2 bagging 2.3 boosting 2.4 随机森林 1)训练随机森林 2)评估随机森林性能 1.调整模型参数来提高性能 参数调整:调节模型合适的选项的过程,如股票C5.0决策树模型中的trials参数,神经网络中的调节节点.隐层数目,SVM中的核函数等等. caret包自动调整参数:train函数,为分类和回归的150种不同机器学习模型自动…
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概…
分类-回归树模型(CART)在R语言中的实现 CART模型 ,即Classification And Regression Trees.它和一般回归分析类似,是用来对变量进行解释和预测的工具,也是数据挖掘中的一种常用算法.如果因变量是连续数据,相对应的分析称为回归树,如果因变量是分类数据,则相应的分析称为分类树. 决策树是一种倒立的树结构,它由内部节点.叶子节点和边组成.其中最上面的一个节点叫根节点. 构造一棵决策树需要一个训练集,一些例子组成,每个例子用一些属性(或特征)和一个类别标记来描述.…
关于分类算法我们之前也讨论过了KNN.决策树.naivebayes.SVM.ANN.logistic回归.关于这么多的分类算法,我们自然需要考虑谁的表现更加的优秀. 既然要对分类算法进行评价,那么我们自然得有评价依据.到目前为止,我们讨论分类的有效性都是基于分类成功率来说的,但是这个指标科学吗?我们不妨考虑这么一个事实:一个样本集合里有95个正例,5个反例,分类器C1利用似然的思想将所有的实例均分成正例,分类成功率为95%:分类器C2成功分出了80个正例,3个反例,分类成功率仅83%.我们可以说…
摘要:R语言的知识体系并非语法这么简单,如果都不了R的全貌,何谈学好R语言呢.本文将展示介绍R语言的知识体系结构,并告诉读者如何才能高效地学习R语言. 最近遇到很多的程序员都想转行到数据分析,于是就开始学习R语言.总以为有了其他语言的编程背景,学习R语言就是一件很简单的事情,一味地追求速度,但不求甚解,有些同学说2周就能掌握R语言,但掌握的仅仅是R语言的语法,其实这只能算是入门. R语言的知识体系并非语法这么简单,如果都不了R的全貌,何谈学好R语言呢.本文将展示介绍R语言的知识体系结构,并告诉读…
R语言中文社区历史文章整理(类型篇)   R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形…
R语言服务器程序 Rserve详解 http://blog.fens.me/r-rserve-server/ Rserve的R语言客户端RSclient https://blog.csdn.net/u011955252/article/details/65442783 http://blog.fens.me/series-r/ R的极客理想系列文章 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域…
转自 雪晴网 [R]如何确定最适合数据集的机器学习算法 抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型.本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一个机器学习项目中. 适用于你的数据集的最佳算法 你无法在建模前就知道哪个算法最适用于你的数据集.你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking.我们所遇到的问题不是我应该采用哪个算法来处理我的数…
XGBoost不仅仅可以用来做分类还可以做时间序列方面的预测,而且已经有人做的很好,可以见最后的案例. 应用一:XGBoost用来做预测 -------------------------------------------------- 一.XGBoost来历 xgboost的全称是eXtreme Gradient Boosting.正如其名,它是Gradient Boosting Machine的一个c++实现,作者为正在华盛顿大学研究机器学习的大牛陈天奇.他在研究中深感自己受制于现有库的计…
笔者寄语:机器学习中交叉验证的方式是主要的模型评价方法,交叉验证中用到了哪些指标呢? 交叉验证将数据分为训练数据集.测试数据集,然后通过训练数据集进行训练,通过测试数据集进行测试,验证集进行验证. 模型预测效果评价,通常用相对绝对误差.平均绝对误差.根均方差.相对平方根误差等指标来衡量. 只有在非监督模型中才会选择一些所谓"高大上"的指标如信息熵.复杂度和基尼值等等. 其实这类指标只是看起来老套但是并不"简单",<数据挖掘之道>中认为在监控.评估监督模型…
A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA).自回归过程(AR).自回归移动平均过程(ARMA)以及ARIMA过程.其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项: MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数. 通常的建立ARIMA…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模型有这么几个未解决的问题: 1.LDA主题数量,多少个才是最优的. 2.作出主题之后,主题-主题,主题与词语之间关联如何衡量. 于是在查阅几位老师做的成果之后,将他们的成果撮合在一起.笔者发现R里面目前有两个包可以做LDA模型,是lda包+topicmodels包,两个包在使用的过程中,需要整理的数…
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言…
数据来源: R语言自带 Nile 数据集(尼罗河流量) 分析工具:R-3.5.0 & Rstudio-1.1.453 #清理环境,加载包 rm(list=ls()) library(forecast) library(tseries) #趋势查看 plot(Nile) #平稳性检验 #自相关图 acf(Nile) #偏相关图 pacf(Nile) #也可以直接用tsdisplay查看 tsdisplay(Nile) #单位根检验 adf.test(Nile) 从自相关图上看,自相关系数没有快速衰…
使用R语言预测产品销量 通过不同的广告投入,预测产品的销量.因为响应变量销量是一个连续的值,所以这个问题是一个回归问题.数据集共有200个观测值,每一组观测值对应一种市场情况. 数据特征 TV:对于一个给定市场的单一产品,用于电视上的广告费用(以千为单位) Radio:用于广告媒体上投资的广告费用 Newspaper:用于报纸媒体上的广告费用 响应 Sales:对应产品的销量 加载数据 > data <- read.csv("http://www-bcf.usc.edu/~garet…
前沿   在文章NLP(十七)利用tensorflow-serving部署kashgari模型中,笔者介绍了如何利用tensorflow-serving部署来部署深度模型模型,在那篇文章中,笔者利用kashgari模块实现了经典的BERT+Bi-LSTM+CRF模型结构,在标注了时间的文本语料(大约2000多个训练句子)中也达到了很好的识别效果,但是也存在着不足之处,那就是模型的预测时间过长,平均预测一个句子中的时间耗时约400毫秒,这种预测速度在生产环境或实际应用中是不能忍受的.   查看该模…
R语言建立回归分析,并利用VIF查看共线性问题的例子 使用R对内置longley数据集进行回归分析,如果以GNP.deflator作为因变量y,问这个数据集是否存在多重共线性问题?应该选择哪些变量参与回归? >>>> 答 ## 查看longley的数据结构 str(longley) ## 'data.frame':    16 obs. of  7 variables: ##  $ GNP.deflator: num  83 88.5 88.2 89.5 96.2 ... ##  …
目录 1.理解回归树和模型树 2.回归树和模型树应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高模型性能 1.理解回归树和模型树 决策树用于数值预测: 回归树:基于到达叶节点的案例的平均值做出预测,没有使用线性回归的方法. 模型树:在每个叶节点,根据到达该节点的案例建立多元线性回归模型.因此叶节点数目越多,一颗模型树越大,比同等回归树更难理解,但模型可能更精确. 将回归加入到决策树: 分类决策树中,一致性(均匀性)由熵值来度量:数值决策树,则通过统计量(如方差.标…
利用R语言打造量化分析平台 具体利用quantmod包实现对股票的量化分析 1.#1.API读取在线行情2.#加载quantmod包3.if(!require(quantmod)){4. install.packages("quantmod")5.}6.#获取股票行情指数7.Quote=function(code){8. index=match(code,universes)9. temp=lapply(universes,get)10. return(temp[[index]])11…
上周在中国R语言大会北京会场上,给大家分享了如何利用R语言交互数据可视化.现场同学对这块内容颇有兴趣,故今天把一些常用的交互可视化的R包搬出来与大家分享. rCharts包 说起R语言的交互包,第一个想到的应该就是rCharts包.该包直接在R中生成基于D3的Web界面. rCharts包的安装 require(devtools) install_github('rCharts', 'ramnathv') rCharts函数就像lattice函数一样,通过formula.data指定数据源和绘图…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- SOM自组织映射神经网络模型 的R语言实现 笔者前言: 最近发现这个被发明于1982年的方法在如今得到了极为广泛的应用,在提倡深度学习的时候,基于聚类的神经网络方法被众多人青睐.但是呢, 网上貌似木有人贴出关于SOM模型的R语言实现,我就抛砖引玉一下.一.SOM模型定义与优劣 自组织映射 ( Self Organization Map, SOM…
R语言︱LDA主题模型——最优主题...:https://blog.csdn.net/sinat_26917383/article/details/51547298#comments…
概率图模型 基于R语言 这本书中的第一个R语言程序 prior <- c(working =0.99,broken =0.01) likelihood <- rbind(working = c(good=0.99,bad=0.01),broken =c(good=0.6,bad=0.4)) data <- c("bad","bad","bad","bad") bayes <- function(prio…
Lasso回归模型,是常用线性回归的模型,当模型维度较高时,Lasso算法通过求解稀疏解对模型进行变量选择.Lars算法则提供了一种快速求解该模型的方法.Lars算法的基本原理有许多其他文章可以参考,这里不过多赘述, 这里主要简介如何在R中利用lars算法包求解线性回归问题以及参数的选择方法. 以下的的一些用法参照lars包的帮助文件,再加上自己的使用心得.所用的示例数据diabetes是Efron在其论文中“Least Angle Regression”中用到的,可以在加载lars包后直接获得…
一. 实训内容 利用R语言对Java项目程序进行调用,本实验包括利用R语言对java的.java文件进行编译和执行输出. 在Java中调用R语言程序.本实验通过eclipse编写Java程序的方式,调用R语言的脚本文件进行传值运算,并将执行后的结果返回给Java程序. 二. 实验课题目标 要求能在R x64 3.6.1程序中进行简单的工作空间切换功能,以及掌握基本的shell.exec()和system()函数的应用. 掌握在R语言中进行包的下载和加载的方法,以及启动Rserve服务的方法. 掌…