Gini系数的原理】的更多相关文章

转载:https://blog.csdn.net/u010665216/article/details/78528261 首先,我们直接构造赛题结果:真实数据与预测数据: predictions = [0.9, 0.3, 0.8, 0.75, 0.65, 0.6, 0.78, 0.7, 0.05, 0.4, 0.4, 0.05, 0.5, 0.1, 0.1] actual = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 我们将预测值从小到大排列:…
首先来看二者的基本定义: ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪H(X)=−∑k=1KpklnpkGini(X)=∑k=1Kpk(1−pk) 将 f(x)=−lnx 在 x=1 处进行一阶泰勒展开(忽略高阶无穷小): f(x)===f(x0)+f′(x0)(x−x0)+o(⋅)f(1)+f′(1)(x−1)+o(⋅)1−x 因此,熵可近似转化为: H(X)=−∑k=1Kpklnpk=∑k=1Kpk(−lnpk)≃∑k=1Kpk(1−pk)=Gini(X)…
前面我们了解了决策树和adaboost的决策树墩的原理和实现,在adaboost我们看到,用简单的决策树墩的效果也很不错,但是对于更多特征的样本来说,可能需要很多数量的决策树墩 或许我们可以考虑使用更加高级的弱分类器,下面我们看下CART(Classification And Regression Tree)的原理和实现吧 CART也是决策树的一种,不过是满二叉树,CART可以是强分类器,就跟决策树一样,但是我们可以指定CART的深度,使之成为比较弱的分类器 CART生成的过程和决策树类似,也是…
 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share Toby,项目合作QQ:231469242 随机森林就是由多个决策树组合而成的投票机制. 理解随机森林,要先了解决策树 随机森林是一个集成机器学习算法…
1.决策树的作用 主要用于解决分类问题的一种算法 2.建立决策树的3中常用算法 1).ID3--->信息增益 2).c4.5--> 信息增益率 4).CART Gini系数 3.提出问题: ID3算法中,选择根节点时为什么要使得信息增益最大的特征呢? ***************************后续内容均为更好的理解3中所提出的的问题展开**************************** 4.ID3算法的理解 如何更好的理解决策树的建立原理呢:我想从下图的层次去理解决策树的原理…
前面说了那么多,一直围绕着分类问题讨论,下面我们开始学习回归树吧, cart生成有两个关键点 如何评价最优二分结果 什么时候停止和如何确定叶子节点的值 cart分类树采用gini系数来对二分结果进行评价,叶子节点的值使用多数表决,那么回归树呢?我们直接看之前的一个数据集(天气与是否出去玩,是否出去玩改成出去玩的时间) sunny hot high FALSE 25 sunny hot high TRUE 30 overcast hot high FALSE 46 rainy mild high…
模拟考某题一开始由于校内OJ太慢直接拆系数FFT跑不过 后来被神仙婊了一顿之后发现复杂度写炸了改了改随便过 模版题:任意模数NTT 三模数NTT 常数巨大,跑的极慢 拆系数FFT 原理是对于两个多项式$ P=\sum\limits_{i=0}^{n-1}P_ix^i \ \ Q=\sum\limits_{i=0}^{m-1}Q_ix^i$ 直接$ FFT$计算会发现值域达到$ 10^{23}$会炸精度 设 $ A=\sum\limits_{i=0}^{n-1}(P_i>>15)x^i \ \…
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 医药统计项目可联系  QQ:231469242     决策树优点和缺点 决策树优点 1.简单易懂,很好解读,可视化 2.可以变量筛选 缺点 1.决策树…
目录 1.前述 2.向量空间的梯度下降: 3.函数空间的梯度下降: 4.梯度下降的流程: 5.在向量空间的梯度下降和在函数空间的梯度下降有什么区别呢? 6.我们看下GBDT的流程图解: 7.我们看一个GBDT的例子: 8.我们看下GBDT不同版本的理解: 1.前述 从本课时开始,我们讲解一个新的集成学习算法,GBDT. 首先我们回顾下有监督学习.假定有N个训练样本,, 找到一个函数 F(x),对应一种映射使得损失函数最小.即: 如何保证最小呢?就是通过我们解函数最优化的算法去使得最小,常见的有梯…
在之前的决策树到集成学习里我们说了决策树和集成学习的基本概念(用了adaboost昨晚集成学习的例子),其后我们分别学习了决策树分类原理和adaboost原理和实现, 上两篇我们学习了cart(决策分类树),决策分类树也是决策树的一种,也是很强大的分类器,但是cart的深度太深,我们可以指定cart的深度使得cart变成强一点的弱分类器. 在决策树到集成学习我们提到,单棵复杂的决策树可以达到100%,而简单的集成学习只能有85%的正确率,下面我们尝试用强一点的弱分类器来看下集成学习的效果有没有提…
引入1:随机变量函数的分布 给定X的概率密度函数为fX(x), 若Y = aX, a是某正实数,求Y得概率密度函数fY(y). 解:令X的累积概率为FX(x), Y的累积概率为FY(y). 则 FY(y) = P(Y <= y) = P(aX <= y) = P(X <= y/a) = FX(y/a), 则 fY(y) = d(FX(y/a)) / dy = 1/a * fX(x/a) 引入2:如何定义信息量 某事件发生的概率小,则该事件的信息量大: 如果两个事件X和Y独立,即p(xy)…
第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见. 机器学习处理问题时又何尝不是如此? 这就是集成方法背后的思想. 集成方法: 投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基于数据随机重抽样分类器构造的方法 再学习(boosting): 是基于…
课程名称    内容    阶段一.人工智能基础 — 高等数学必知必会     1.数据分析    "a. 常数eb. 导数c. 梯度d. Taylore. gini系数f. 信息熵与组合数g. 梯度下降h. 牛顿法"    2.概率论    "a. 微积分与逼近论b. 极限.微分.积分基本概念c. 利用逼近的思想理解微分,利用积分的方式理解概率d. 概率论基础e. 古典模型f. 常见概率分布g. 大数定理和中心极限定理h. 协方差(矩阵)和相关系数i. 最大似然估计和最大后…
tree based ensemble algorithms 主要介绍以下几种ensemble的分类器(tree based algorithms) xgboost lightGBM: 基于决策树算法的分布式梯度提升框架 GBDT(Gradient Boosting Decison Tree) 随机森林 Why is it called random forest 决策树 tree based ensemble algorithms 原始的Boost算法是在算法开始的时候,为每个样本赋上一个权重…
作者:桂. 时间:2017-05-13  14:19:14 链接:http://www.cnblogs.com/xingshansi/p/6847334.html . 前言 内容主要是CART算法的学习笔记. CART算法是一个二叉树问题,即总是有两种选择,而不像之前的ID3以及C4.5B可能有多种选择.CART算法主要有回归树和分类树,二者常用的准则略有差别:回归树是拟合问题,更关心拟合效果的好坏,此处用的是均方误差准则; 分类树是分类问题,更像是离散变量的概率估计,用与熵类似的Gini系数进…
一. 决策树 决策树(Decision Tree)及其变种是另一类将输入空间分成不同的区域,每个区域有独立参数的算法.决策树分类算法是一种基于实例的归纳学习方法,它能从给定的无序的训练样本中,提炼出树型的分类模型.树中的每个非叶子节点记录了使用哪个特征来进行类别的判断,每个叶子节点则代表了最后判断的类别.根节点到每个叶子节点均形成一条分类的路径规则.而对新的样本进行测试时,只需要从根节点开始,在每个分支节点进行测试,沿着相应的分支递归地进入子树再测试,一直到达叶子节点,该叶子节点所代表的类别即是…
已迁移到我新博客,阅读体验更佳基于sklearn的分类器实战 完整代码实现见github:click me 一.实验说明 1.1 任务描述 1.2 数据说明 一共有十个数据集,数据集中的数据属性有全部是离散型的,有全部是连续型的,也有离散与连续混合型的.通过对各个数据集的浏览,总结出各个数据集的一些基本信息如下: 连续型数据集: 1. diabets(4:8d-2c) 2. mozilla4(6:5d-2c) 3. pc1(7:21d-2c) 4. pc5(8:38d-2c) 5. wavefo…
 下面一文章就总结几点关键: 1.要学会观察,尤其是输入数据的特征提取时,看各输入数据和输出的关系,用绘图看! 2.训练后,看测试数据和训练数据误差,确定是否过拟合还是欠拟合: 3.欠拟合的话,说明模型不准确或者特征提取不够,对于特征提取不够问题,可以根据模型的反馈来看其和数据的相关性,如果相关系数是0,则放弃特征,如果过低,说明特征需要再次提炼! 4.用集成学习,bagging等通常可以获得更高的准确度! 5.缺失数据可以使用决策树回归进行预测! 转自:http://blog.csdn.net…
第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见. 机器学习处理问题时又何尝不是如此? 这就是集成方法背后的思想. 集成方法: 投票选举(bagging: 自举汇聚法 bootstrap aggregating): 是基于数据随机重抽样分类器构造的方法 再学习(boosting): 是基于…
第9章 树回归 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=default"></script> 树回归 概述 我们本章介绍 CART(Classification And Regression Trees, 分类回归树) 的树构建算法.该算法既可以用于分类还可以用于回归. 树回归 场景 我们在第 8 章…
讲授决策树的基本概念,分类与回归树的原理,决策树的表示能力,决策树的训练算法,寻找最佳分裂的原理,叶子节点值的标记,属性缺失与替 代分裂,决策树的剪枝算法,决策树应用. 非常直观和易于理解的机器学习算法,最符合人的直观思维,因为生活中很多时候做决策就是用这种树状结构做决定的. 大纲: 基本概念分类与回归树训练算法寻找最佳分裂属性缺失与替代分裂过拟合与剪枝实验环节实际应用 基本概念: ①树是一种分层的数据结构,家谱.书的目录就是一棵树的结构. ②树是一个递归的结构,树的每个子节点,以它为根同样是一…
Decision Tree算法的思路是,将原始问题不断递归地细分为子问题,直到子问题直接可获得答案为止.在模型训练的过程中,根据训练集去做树的生长(Grow the tree),生长所有可能的Branches,最终达到叶子节点(leaf nodes).在预测过程中,则遍历树枝,去寻找和预测目标最相近的叶子. 构建决策树模型: 而在构建过程中的主要问题是,选择数据集的哪个feature来做分割.这里用到了Greedy Search.形象地说,每走一步,都选择当前情况下最好的路径,而不管下一步如何或…
本文总结ML面试常见的问题集 转载来源:https://blog.csdn.net/v_july_v/article/details/78121924 1.简要介绍SVM 全称是support vector machine,中文名叫支持向量机.SVM是一个面向数据的分类算法,它的目标是为确定一个分类超平面,从而将不同的数据分隔开. 扩展:这里有篇文章详尽介绍了SVM的原理.推导,<支持向量机通俗导论(理解SVM的三层境界)>.此外,这里有个视频也是关于SVM的推导:<纯白板手推SVM&g…
  一.决策树的原理 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法 . 二.决策树的现实案例 相亲   相亲决策树 女儿:多大年纪了? 母亲:26. 女儿:长的帅不帅? 母亲:挺帅的. 女儿:收入高不? 母亲:不算很高,中等情况. 女儿:是公务员不? 母亲:是,在税务局上班呢. 女儿:那好,我去见见. 银行是否发放贷款 行长:是否有自己的房子? 职员:有. 行长:可以考虑放贷. 职员:如果没有自己的房子呢? 行长…
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离. 简单理解这个算法: 这个算法是用来给特征值分类的,是属于有监督学习的领域,根据不断计算特征值和有目标值的特征值的距离来判断某个样本是否属于某个目标值. 可以理解为根据你的邻居来判断你属于哪个类别. 1.3 API sklea…
决策树是什么 决策树是基于树结构来进行决策,这恰是人类在面临决策问题时一种很自然的处理机制.例如,我们要对"这是好瓜吗?"这样的问题进行决策时,通常会进行一系列的判断或"子决策":我们先看"它是什么颜色?",如果是"青绿色",则我们再看"它的根蒂是什么形态?",如果是"蜷缩",我们再判断"它敲起来是什么声音?",最后我们得出决策:这是一个好瓜.这个决策如图所示: 决策…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布,学习思想包括ID3,C4.5,CART(摘自<统计学习方法>). 1.2 Bagging :基于数据随机重抽样的集成方法(Ensemble methods),也称为自举汇聚法(boostrap aggregating),整个数据集是…
GBDT和xgboost在竞赛和工业界使用都非常频繁,能有效的应用到分类.回归.排序问题,虽然使用起来不难,但是要能完整的理解还是有一点麻烦的.本文尝试一步一步梳理GB.GBDT.xgboost,它们之间有非常紧密的联系,GBDT是以决策树(CART)为基学习器的GB算法,xgboost扩展和改进了GDBT,xgboost算法更快,准确率也相对高一些. 1. Gradient boosting(GB) 机器学习中的学习算法的目标是为了优化或者说最小化loss Function, Gradient…
决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完全生长”决策树因为其简单直观,具有很强的解释性,也有广泛的应用,而且决策树是tree ensemble 的基础,值得好好理解.一般而言一棵“完全生长”的决策树包含,特征选择.决策树构建.剪枝三个过程,这篇文章主要是简单梳理比较ID3.C4.5.CART算法.<统计学习方法>中有比较详细的介绍. 一…
与上篇文章中提到的ID3算法和C4.5算法类似,CART算法也是一种决策树分类算法.CART分类回归树算法的本质也是对数据进行分类的,最终数据的表现形式也是以树形的模式展现的,CART与ID3,C4.5所采用的分类标准是不同了. 下面列出了其中的一些不同之处: 1.CART最后形成的树是一个二叉树,每个节点会分成2个节点,左孩子节点和右孩子节点,于是这就要求CART算法在所选定的属性中又要划分出最佳的属性划分值,节点如果选定了划分属性名称还要确定里面按照哪个值做一个二元的划分(为属性的值为一类,…