基于MNIST数据的softmax regression】的更多相关文章

跟着tensorflow上mnist基本机器学习教程联系 首先了解sklearn接口: sklearn.linear_model.LogisticRegression In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross- entropy loss if the…
基于tensorflow使用CNN识别MNIST 参数数量:第一个卷积层5x5x1x32=800个参数,第二个卷积层5x5x32x64=51200个参数,第三个全连接层7x7x64x1024=3211264个参数,第四个输出层1024x10=10240个参数,总量级为330万个参数,单机训练时间约为30分钟. 关于优化算法:随机梯度下降法的learning rate需要逐渐变小,因为随机抽取样本引入了噪音,使得我们在最小点处的随机梯度仍然不为0.对于batch gradient descent不…
本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https://cran.r-project.org/web/packages/softmaxreg/index.html ------------------------------------------------------------------ 一.介绍 Softmax Regression模型本质还是…
博文主要内容有: 1.softmax regression的TensorFlow实现代码(教科书级的代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64.exe (当时TF还不支持python3.6,又懒得在高版本的anaconda下配置多个python环境,于是装了一个3-4.2.0(默认装python3.5),建议装anaconda3的最新版本,TF1.2.0版本已经支持python3.6!) 3.Te…
Coding according to TensorFlow 官方文档中文版 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) ''' Intro. for this python file. Objective: Implement for a…
Deep Learning Tutorial 由 Montreal大学的LISA实验室所作,基于Theano的深度学习材料.Theano是一个python库,使得写深度模型更容易些,也可以在GPU上训练深度模型.所以首先得了解python和numpy.其次,阅读Theano basic tutorial. Deep Learning Tutorial 包括: 监督学习算法: Logistic Regression - using Theano for something simple Multi…
Tensorflow是当下AI热潮下,最为受欢迎的开源框架.无论是从Github上的fork数量还是star数量,还是从支持的语音,开发资料,社区活跃度等多方面,他当之为superstar. 在前面介绍了如何搭建Tensorflow的运行环境后(包括CPU和GPU的),今天就从MNIST手写识别的源码上分析一下,tensorflow的工作原理,重点是介绍CNN的一些基本理论,作为扫盲入门,也作为自己的handbook吧. Architecture 首先,简单的说下,tensorflow的基本架构…
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法步骤: 首先,加载数据集{x(1),x(2),x(3)...x(m)}该数据集为一个n*m的矩阵,然后初始化参数 θ ,为一个k*n的矩阵(不考虑截距项):       首先计算,该矩阵为k*m的: 然后计算: 该函数参数可以随意+-任意参数而保持值不变,所以为了防止 参数 过大,先减去一个常量,防…
PS:这些是今年4月份,跟斯坦福UFLDL教程时的实验报告,当时就应该好好整理的…留到现在好凌乱了 Softmax Regression实验报告 1.Softmax Regression实验描述 Softmax回归模型是逻辑回归模型的推广,它可以把数据分类到两个以上的类别.在本实验中,我们的目标是采用Softmax回归模型对MNIST手写数字数据库进行分类,识别每个手写数字,把它们归类于0到9之间的10个类别.实验中需要计算成本函数J,参数Theta,成本函数的梯度,及预测假设h. Figure…
TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology database),简单机器视觉数据集,28X28像素手写数字,只有灰度值信息,空白部分为0,笔迹根据颜色深浅取[0, 1], 784维,丢弃二维空间信息,目标分0~9共10类.数据加载,data.read_data_sets, 55000个样本,测试集10000样本,验证集5000样本.样本标注信…
     关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.csdn.net/qq_37608890/article/details/79343860).        本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关概念 1.MNIST MNIST(Mixed…
基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训练,在MNIST数据集中每张图像的分辨率为28*28,即784维,对应于上图中的x; 而输出为数字类别,即0~9,因此上图中的y的维度维10.因此权重w的维度为[784, 10],wi,j代表第j维的特征对应的第i类的权重值,主要是为了矩阵相乘时计算的方便,具体见下面代码. 训练过程 1.训练过程中…
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法步骤: 首先,加载数据集{x(1),x(2),x(3)...x(m)}该数据集为一个n*m的矩阵,然后初始化参数 θ ,为一个k*n的矩阵(不考虑截距项):       首先计算,该矩阵为k*m的: 然后计算: 该函数参数可以随意+-任意参数而保持值不变,所以为了防止 参数 过大,先减去一个常量,防…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…
本章已机器学习领域的Hello World任务----MNIST手写识别做为TensorFlow的开始.MNIST是一个非常简单的机器视觉数据集,是由几万张28像素*28像素的手写数字组成,这些图片只包含灰度值信息. 下面提取了784维的特征,也就是2828个点展开成一维的结果,所以训练数据是一个55000784的Tensor,label是一个55000*10的tensor.当我们处理多分类任务时,通常需要使用Softmax Regression模型.它的工作原理很简单,将可以判定为某类的特征相…
转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件3类,目标值y是一个有3个取值的离散值.这是一个多分类问题,二分类模型在这里不太适用. 多分类问题符合多项分布.有许多算法可用于解决多分类问题,像决策树.朴素贝叶斯等.这篇文章主要讲解多分类算法中的Softmax回归(Softmax Regression) 推导思路为:首先证明多项分布属于指数分布族…
上一篇讲的Softmax regression,当时时间不够,没把练习做完.这几天学车有点累,又特别想动动手自己写写matlab代码 所以等到了现在,这篇文章就当做上一篇的续吧. 回顾: 上一篇最后给出了softmax regression的代价函数和其偏导数,当然要实现的话基本也就是这两个函数的实现,为方便查看,这里再写一遍: 代价函数: 偏导数: 实现: 实现过程就是对MNIST手写数字库进行的分类(数字从0~9共10个). 说实话,上面代价函数对于我这matlab用的不熟的人来说,着实吓了…
Softmax Regression Chapter Basics generate random Tensors Three usual activation function in Neural Network Softmax funcion Softmax Regression Logistic Regression Softmax Regression Examples Basics generate random Tensors Three usual activation funct…
Softmax Regression Tutorial地址:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ 从本节開始,难度開始加大了.我将更具体地解释一下这个Tutorial. 1 Softmax Regression 介绍 前面我们已经知道了Logistic Regression.简单的说就推断一个样本属于1或者0.在应用中比方手的识别.那么就是推断一个图片是手还是非手.这就是非常easy的分类. 其实.我们仅…
Softmax Regression算法实践 有了上篇博客的理论知识,我们可以利用实现好的函数,来构建Softmax Regression分类器,在训练分类器的过程中,我们使用多分类数据作为训练数据:如图 1.利用训练数据对模型进行训练: 完整代码为: # -*- coding: UTF- -*- # date:// # User:WangHong import numpy as np def gradientAscent(feature_data,label_data,k,maxCycle,a…
Softmax Regression模型 由于Logistics Regression算法复杂度低,容易实现等特点,在工业中的到广泛的使用,但是Logistics Regression算法主要用于处理二分类问题,若需要处理的是多分类问题,如手写字的识别,即识别{0,1,2,3,4,5,6,7,8,9}中的数字,此时需要使用能够处理多分类问题的算法. Softmax Regression算法是Logistics Regression算法在多分类问题上的推广,主要用于处理多分类问题,其中,任意两个类…
Step 0: Initialize constants and parameters Step 1: Load data Step 2: Implement softmaxCost Implementation Tip: Preventing overflows - in softmax regression, you will have to compute the hypothesis When the products are large, the exponential functio…
这个程序参考自极客学院. from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf # MNIST数据存放的路径 file = "./MNIST" # 导入数据 mnist = input_data.read_data_sets(file, one_hot=True) # 模型的输入和输出 x = tf.placeholder(tf.float32, shape=[None, 7…
版本(4bit) 报头长度(4bit) 优先级和服务类型(8bit) 总长度(16bit) 标识(16bit) 标志(3bit) 分段偏移(13bit) 存活期(8bit) 协议(8bit) 报头校验和(16bit) 源IP地址(32bit) 目的IP地址(32bit) 选项(0或32bit,若有的话) 数据(可变)…
H2O是开源基于大数据的机器学习库包 H2O能够让Hadoop做数学,H2O是基于大数据的 统计分析 机器学习和数学库包,让用户基于核心的数学积木搭建应用块代码,采取类似R语言 Excel或JSON等熟悉接口,使的BigData爱好者和专家可以利用一系列简单的先进算法对数据集进行探索,建模和评估.数据收集是很容易,但是决 策是很难的. H2O使得能用更快更好的预测模型源实现快速和方便地数据的挖掘. H2O愿意将在线评分和建模融合在一个单一平台上. H2O提供了机器学习的培训手册供学习:H2O训练…
ufldl学习笔记与编程作业:Softmax Regression(softmax回归) ufldl出了新教程.感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其它机器学习的算法,能够直接来学dl. 于是近期就開始搞这个了.教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutoria…
出现问题: 在使用TensorFlow实现MNIST手写数字识别时,出现"TimeoutError: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败"问题. 截图如下: 问题原因: 出现该问题的原因可能是由于自身网络问题或者mnist数据集下载网页连接不成功导致. 解决办法: 进入MNIST数据下载网页:http://yann.lecun.com/exdb/mnist/ 将数据下载到相应的路径下,参考如图: 代码中显示将数据下载至…
<Trip destination prediction based on multi-day GPS data>是一篇在2019年,由吉林交通大学团队发表在elsevier期刊上的一篇论文.在论文中,他们基于GPS数据,使用不同的方法建立了多个预测目的地的模型,进行对比试验,最终提高了正确率,取得了很好的效果. 0. 概括 基于8周.10人的GPS数据,在隐式马尔可夫模型和习惯预测模型的基础上,作者建立了一个可以预测出行目的地的模型,该模型大大提高了预测的精度.最重要的他们发现,人们出行关于…
本文讨论的关键词:Logistic Regression(逻辑回归).Neural Networks(神经网络) 之前在学习LR和NN的时候,一直对它们独立学习思考,就简单当做是机器学习中的两个不同的models,从来没有放在一起观察过,最近通过阅读网络资料,才发现,原来LR和NN之间是有一定的联系的,了解它们之间的联系后,可以更好地理解 Logistic Regression(逻辑回归)和Neural Networks(神经网络) Logistic Regression:典型的二值分类器,用来…