整理下,基本分两个方式: 一.对于大量大文件(大于block块设置的大小) 增大minSize,即增大mapred.min.split.size的值,原因:splitsize=max(minisize,min(maxsize,blocksize)),blocksize一般不会做修改. 在没有设置minisize,maxsize时,splitsize取blocksize. 二.对于大量小文件(小于block块设置的大小) 这种情况通过增大mapred.min.split.size不可行, 需要使用…
深度分析如何在Hadoop中控制Map的数量 guibin.beijing@gmail.com 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input 占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成 启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导…
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃.这些逻辑确实是正确的,但都是在默认情况下的逻辑.其实如果进行一些客户化的设置,就可以控制了.…
分块:Block HDFS存储系统中,引入了文件系统的分块概念(block),块是存储的最小单位,HDFS定义其大小为64MB.与单磁盘文件系统相似,存储在 HDFS上的文件均存储为多个块,不同的是,如果某文件大小没有到达64MB,该文件也不会占据整个块空间.在分布式的HDFS集群上,Hadoop系统保证一个块存储在一个datanode上. 把File划分成Block,这个是物理上真真实实的进行了划分,数据文件上传到HDFS里的时候,需要划分成一块一块,每块的大小由hadoop-default.…
前言 首先确保已经搭建好Hadoop集群环境,可以参考<Linux下Hadoop集群环境的搭建>一文的内容.我在测试mapreduce任务时,发现相比于使用Job.setNumReduceTasks(int)控制reduce任务数量而言,控制map任务数量一直是一个困扰我的问题.好在经过很多摸索与实验,终于梳理出来,希望对在工作中进行Hadoop进行性能调优的新人们有个借鉴.本文只针对FileInputFormat的任务划分进行分析,其它类型的InputFormat的划分方式又各有不同.虽然如…
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃.这些逻辑确实是正确的,但都是在默认情况下的逻辑.其实如果进行一些客户化的设置,就可以控制了.…
hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素.      为了方便介绍,先来看几个名词: block_size : hdfs的文件块大小,默认为64M,可以通过参数dfs.block.size设置 total_size : 输入文件整体的大小 input_file_…
原文链接:https://blog.csdn.net/lylcore/article/details/9136555     hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素.      为了方便介绍,先来看几个名词: block_size : hdfs的文件块大小,默…
hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素.      为了方便介绍,先来看几个名词: block_size : hdfs的文件块大小,默认为64M,可以通过参数dfs.block.size设置 total_size : 输入文件整体的大小 input_file_…
作业从JobClient端的submitJobInternal()方法提交作业的同时,调用InputFormat接口的getSplits()方法来创建split.默认是使用InputFormat的子类FileInputFormat来计算分片,而split的默认实现为FileSplit(其父接口为InputSplit).这里要注意,split只是逻辑上的概念,并不对文件做实际的切分.一个split记录了一个Map Task要处理的文件区间,所以分片要记录其对应的文件偏移量以及长度等.每个split…
控制map个数的核心源码 long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //getFormatMinSplitSize 默认返回1,getMinSplitSize 为用户设置的最小分片数, 如果用户设置的大于1,则为用户设置的最小分片数 long maxSize = getMaxSplitSize(job); //getMaxSplitSize为用户设置的最大分片数,默认最大为long 922337…
Hadoop为用户作业提供了多种可配置的参数,以允许用户根据作业特点调整这些参数值使作业运行效率达到最优. 一 应用程序编写规范 1.设置Combiner         对于一大批MapReduce程序,如果可以设置一个Combiner,那么对于提高作业性能是十分有帮助的.Combiner可减少Map Task中间输出的结果,从而减少各个Reduce Task的远程拷贝数据量,最终表现为Map Task和Reduce Task执行时间缩短. 2. 选择合理的Writable类型       …
转自:http://blog.csdn.net/yczws1/article/details/21899007 纯干货:通过WourdCount程序示例:详细讲解MapReduce之Block+Split+Shuffle+Map+Reduce的区别及数据处理流程. Shuffle过程是MapReduce的核心,集中了MR过程最关键的部分.要想了解MR,Shuffle是必须要理解的.了解Shuffle的过程,更有利于我们在对MapReduce job性能调优的工作有帮助,以及进一步加深我们对MR内…
1.概念.方案 2.代码示例 InverseIndexOne package com.ares.hadoop.mr.inverseindex; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.L…
1.概念 2.Hadoop默认分组机制--所有的Key分到一个组,一个Reduce任务处理 3.代码示例 FlowBean package com.ares.hadoop.mr.flowgroup; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.WritableComparable; public class FlowBean…
1.1作业某个任务阻塞了,长时间占用资源不释放 1.2在MapTask任务运行完毕,ReduceTask运行过程中,某个MapTask节点挂了,或者某个MapTask结果存放的那磁盘坏掉了 在TaskTracker,每个任务会定期向TaskTracker汇报进度,如果进度不变则不汇报,这样一旦达到超时限制,TaskTracker会杀掉该任务,并将任务状态KILLED汇报给YARN,从而重新调度该任务. Case1:如果节点挂掉,JobTracker通过心跳机制知道TaskTracker死掉了,会…
上篇说了block在DataNode配置有多个${dfs.data.dir}时的存储策略,本文主要介绍TaskTracker在配置有多个${mapred.local.dir}时的选择策略. mapred-site.xml <property> <name>mapred.local.dir</name> <value>/mnt/localdir1/local,/mnt/localdir2/local,/mnt/localdir3/local</value…
MapReduce作业可以细分为map task和reduce task,而MRAppMaster又将map task和reduce task分为四种状态: 1.pending:刚启动但尚未向resourcemanager发送资源请求: 2.scheduled:已经向resourceManager发送资源请求,但尚未分配到资源: 3.assigned:已经分配到了资源且正在运行: 4.completed:已经运行完成. map task的生命周期为:scheduled -> assigned -…
上篇我刚刚学习完.Spilt的过程,还算比較简单的了,接下来学习的就是Map操作的过程了,Map和Reduce一样.是整个MapReduce的重要内容,所以.这一篇,我会好好的讲讲里面的内部实现过程.首先要说,MapTask.分为4种,可能这一点上有人就可能知道了,各自是Job-setup Task,Job-cleanup Task.Task-cleanup和Map Task.前面3个都是辅助性质的任务.不是本文分析的重点,我讲的就是里面的最最重要的MapTask. MapTask的整个过程分为…
Hadoop开发job需要定一个Map/Reduce/Job(启动MR job,并传入参数信息),以下代码示例实现的功能: 1)将一个用逗号分割的文件,替换为“|”分割的文件: 2)对小文件合并,将文件合并为reduceNum个文件. DataMap.java package com.dx.fpd_load; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.…
1.概念 2.代码示例 FlowSort package com.ares.hadoop.mr.flowsort; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; i…
1.代码示例 package com.ares.hadoop.mr.flowsort; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apac…
1.基本概念 2.Mapper代码 package com.ares.hadoop.mr.flowsum; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.util.StringUtils; import…
1.基本概念 2.Mapper package com.ares.hadoop.mr.wordcount; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; //Long, String,…
一.调整hive作业中的map数 1.通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改): 2.举例: a)假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数b)假设input目录下有3个文…
Shuffle Map Task运算结果的处理 这个结果的处理,分为两部分,一个是在Executor端是如何直接处理Task的结果的:还有就是Driver端,如果在接到Task运行结束的消息时,如何对Shuffle Write的结果进行处理,从而在调度下游的Task时,下游的Task可以得到其需要的数据. Executor端的处理 在解析BasicShuffle Writer时,我们知道ShuffleMap Task在Executor上运行时,最终会调用org.apache.spark.sche…
本文主要说一下Spark中Task相关概念.RDD计算时Task的数量.Spark Streaming计算时Task的数量. Task作为Spark作业执行的最小单位,Task的数量及运行快慢间接决定了作业运行的快慢. 开始 先说明一下Spark作业的几个核心概念: Job(作业):Spark根据行动操作触发提交作业,以行动操作将我们的代码切分为多个Job. Stage(调度阶段):每个Job中,又会根据宽依赖将Job划分为多个Stage(包括ShuffleMapStage和ResultStag…
1-map task的并发数量是由切片的数量决定的,有多少个切片就有启动多少个map task: 2-切片是一个逻辑的概念,指的是文件中数据的偏移量范围: 3-切片的具体大小应该根据所处理的文件大小来调整:例如:小文件的切片有多个block组成: reduce的并发数量由,partition分组决定…
package com; import java.util.concurrent.Semaphore; /** * Created by yangyu on 16/11/28. */ /** * Semaphore控制并发线程数量 * * 使用场景: * 当大批量的并发请求来到系统当中时,为了保证系统稳定,真正执行业务逻辑的线程其实数量有限: * 为了保证业务系统的稳定,不会被峰值请求给击垮,那么应该对执行业务逻辑的线程进行并发控制: * 而Semaphore就可以用于控制并发线程数量 */ p…
1,为什么要控制goroutine的数量? goroutine固然好,但是数量太多了,往往会带来很多麻烦,比如耗尽系统资源导致程序崩溃,或者CPU使用率过高导致系统忙不过来.比如: ; i < ; i++ { go work() } 2,用什么方法控制goroutine的数量? 要在每一次执行go之前判断goroutine的数量,如果数量超了,就要阻塞go的执行.第一时间想到的就是使用通道.每次执行的go之前向通道写入值,直到通道满的时候就阻塞了,如下: var ch chan int func…