\(\mathcal{Description}\)   Link.   令 \(f\) 为 \(\text{Fibonacci}\) 数列,给定 \(\{a_n\}\),求: \[\operatorname{lcm}\{f_{a_1},f_{a_2},\cdots,f_{a_n}\}\bmod(10^9+7) \]   \(n\le5\times10^4\),\(a_i\le10^6\). \(\mathcal{Solution}\)   你得知道: \[\gcd(f_i,f_j)=f_{\gc…
题目 51nod的数学题都还不错啊 首先直接算显然是没有办法算的,因为\(fib\)的lcm这个东西还是太鬼畜了 我们考虑到\(fib\)数列的一个非常好的性质是\(gcd(fib_i,fib_{j})=fib_{gcd(i,j)}\),而\(gcd\)对应的是各质数次幂的最小值,\(lcm\)是各质数次幂的最大值 于是我们自然而然的想到了\(min-max\)容斥 显然答案就是 \[\prod_{T\subset S}gcd(T)^{(-1)^{|T|+1}}\] 考虑到\(gcd(T)\)不…
POJ 3070 #include "iostream" #include "cstdio" using namespace std; class matrix { public: ][]; matrix() { a[][]=a[][]=a[][]=; a[][]=; } }; matrix multi(matrix a,matrix b) { matrix temp; int i,j,k; ;i<;i++) ;j<;j++) { temp.a[i][j…
[51nod1355]斐波那契的最小公倍数(min-max容斥) 题面 51nod 题解 显然直接算还是没法算的,所以继续考虑\(min-max\)容斥计算. \[lcm(S)=\prod_{T\subset S}gcd(T)^{(-1)^{|T|+1}}\] 而斐波那契数列满足\(gcd(f(a),f(b))=f(gcd(a,b))\), 于是和最小公倍佩尔数一样的类似处理 \[lcm(S)=\prod_{i=1}^{\infty}f(i)^{\sum_{T\subset S}[gcd(T)=…
题目传送门:LOJ #3184. 题意简述: 题目说得很清楚了. 题解: 首先需要了解「斐波那契数系」为何物. 按照题目中定义的斐波那契数列 \(F_n\),可以证明,每个非负整数 \(n\) 都能够以唯一方式用如下方式描述: \[n=\sum_{i=1}^{m}a_iF_i\] 其中 \(m\) 是正整数,\(a\) 是长度为 \(m\) 的 \(01\) 序列,\(a\) 中不存在相邻两项 \(a_i\) 与 \(a_{i+1}\) 同为 \(1\). 例如,当 \(m=5\) 时,有: \…
P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很"简单"问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整数n和m.(n,m<=10^9) 注意:数据很大 输出格式: Fn和Fm的最大公约数. 由于看了大数字就头晕,所以只要输出最后的8位数字就可以了. 输入输出样例 输入样例#1: 4 7 输出样例#1: 1 说明 用递归&递推会超时 用通项公式也会超…
vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博客中给出了详细证明,这里就不再赘述了. 考虑怎样将 LCM 转化为 gcd,注意到有个东西叫 Min-Max 容斥,即对于集合 \(S\),\(\max(S)=\sum\limits_{\varnothing\ne T\subseteq S}(-1)^{|T|+1}\min(T)\),该性质同样可以…
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求…
Description 给定 \(n\) 个正整数 \(a_1,a_2,...,a_n\),求 \(\text{lcm}(f_{a_1},f_{a_2},...,f_{a_n})\).其中 \(f_i\) 是斐波那契数列第 \(i\) 项. \(n\leq 50000,a_i\leq 10^6\). Sol 首先关于集合 \(S\) 的\(\text{lcm}\)可以用类似\(\text{min-max}\)容斥的式子搞一下,变成跟\(\gcd\)有关: \[ \text{lcm}(T)=\pr…
\(\mathcal{Description}\)   Link.   称排列 \(\{p_n\}\) 美妙,当且仅当 \((\forall i\in[1,n))(\max_{j\in[1,i]}\{p_i\}>\min_{j\in(i,n]}\{p_j\})\).求长度为 \(n\) 的美妙排列个数.多测.   \(n\le10^5\). \(\mathcal{Solution}\)   讨论这道题的时候--打表,然后发现了 A003319!/xyx   显然 \(f(0)=0,f(1)=1\…
\(\mathcal{Description}\)   Link & 双倍经验 Link.   给定一棵 \(n\) 个结点的树,每个结点有一种颜色.记 \(g(u,v)\) 表示 \(u\) 到 \(v\) 简单路径上的颜色种数,求 \[\sum_{\{p_n\}}\sum_{i=1}^{n-1}g(p_i,p_{i+1}) \]   其中 \(\{p_n\}\) 表示 \(1\sim n\) 的排列.   \(n\le10^5\),答案对 \((10^9+7)\) 取模. \(\mathca…
\(\mathcal{Description}\)   Link.   令 \(\sigma(n)\) 为 \(n\) 的约数之和.求: \[\sum_{i=1}^n\sum_{j=1}^n\max\{i,j\}\sigma(ij)\bmod(10^9+7) \]   多测,\(n\le10^6\),数据组数 \(\le5\times10^4\). \(\mathcal{Solution}\)   直 接 来 owo! \[\sum_{i=1}^n\sum_{j=1}^n\max\{i,j\}\…
更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今给定数列的两系数\(p\)和\(q\),以及数列的最前两项\(a_1\)和\(a_2\),另给出两个整数\(n\)和\(m\),试求数列的第\(n\)项\(a_n\)除以\(m\)的余数. Input 输入包含一行6个整数.依次是\(p\),\(q\),\(a_1\),\(a_2\),\(n\),\…
题目 [题目描述] ITX351 要铺一条 $2 \times N$ 的路,为此他购买了 $N$ 块 $2 \times 1$ 的方砖.可是其中一块砖在运送的过程中从中间裂开了,变成了两块 $1 \times 1$ 的砖块! ITX351 由此产生了一个邪恶的想法:他想要在这条路上故意把两块 $1 \times 1$ 的砖块分开铺,**不让两块砖有相邻的边**,其他砖块可以随意铺,直到整条路铺满.这样一定可以逼死自身强迫症 sea5! 也许下面的剧情你已经猜到了——他为此兴奋不已,以至于无法敲键…
164分 rank11/64 这次考的不算太差,但是并没有多大的可能性反超(只比一小部分人高十几分而已),时间分配还是不均,T2两个半小时,T1半个小时,T3-额十几分钟吧 然额付出总是与回报成反比的,T1切了,T2超时60分,T3拿到了4分的好成绩,但某位不愿透露姓名的王鹤松说,他花了将近俩小时在T1上,20分钟T2,结果T1没有切掉,T2 比我高十分(QWQ) 这场考试下来发现自己还是有点儿紧张,中间去了好几次WC 对于这场考试,遗憾的是时间分配不均,没有拿到足够高的分数来给自己上保险,不过…
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1070 题意: 思路: 这个是斐波那契博弈,http://blog.csdn.net/acm_cxlove/article/details/7835016,关于斐波那契博弈的介绍,可以看看这篇博客.以下的内容便是转自这篇博客. 1.当i=2时,先手只能取1颗,显然必败,结论成立. 2.假设当i<=k时,结论成立. 则当i=k+1时,f[i] = f[k]+f[k-1].…
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可.   Input 输入1个数n…
1070 Bash游戏 V4  基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次拿的数量最少1个,最多不超过对手上一次拿的数量的2倍(A第1次拿时要求不能全拿走).拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N,问最后谁能赢得比赛. 例如N = 3.A只能拿1颗或2颗,所以B可以拿到最后1颗石子. Input 第1行:一个数T,表示后面用作输入测试的数的数量…
之前一直没敢做矩阵一类的题目 其实还好吧 推荐看一下 : http://www.cnblogs.com/SYCstudio/p/7211050.html 但是后面的斐波那契 推导不是很懂  前面讲的挺好的 后来看到了 http://blog.csdn.net/flyfish1986/article/details/48014523 相当于  是一个那个东西的k-1次方  而且由于 F(1) = 1 所以直接求k-1次方就可以了 #include<bits/stdc++.h> using nam…
斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可.   Input输入1个数n(1 <= n <= 10^18).Output输出F(n) % 1000000009的结果.Sample Input…
直接斐波那契... #include<stdio.h> #include<queue> #include<string.h> #include<iostream> #include<algorithm> using namespace std; typedef long long LL; const int INF=0x3f3f3f3f; const LL mod=1e9+7; LL a[1010]; int main() { a[1]=1; a…
斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可.   输入 输入1个数n(1 <= n <= 10^18). 输出 输出F(n) % 1000000009的结果. 输入样例 11 输出样例 89解…
Bash游戏V1 有一堆石子共同拥有N个. A B两个人轮流拿.A先拿.每次最少拿1颗.最多拿K颗.拿到最后1颗石子的人获胜.如果A B都很聪明,拿石子的过程中不会出现失误.给出N和K,问最后谁能赢得比赛. 比如N = 3.K = 2.不管A怎样拿,B都能够拿到最后1颗石子. Input 第1行:一个数T.表示后面用作输入測试的数的数量.(1 <= T <= 10000) 第2 - T + 1行:每行2个数N,K.中间用空格分隔.(1 <= N,K <= 10^9) Output…
0x00 前置芝士 数位dp考试里出现的小神题?? 显然考场会选择打表找规律. 数位dp + 矩阵快速幂 0x01 题目描述 给定正整数 \(n\),现有如下方程 \(x \bigoplus 3x = 2x\),其中 \(\bigoplus\) 表示按位异或. 任务如下: 求出小于等于 \(n\) 的正整数中,有多少个数是该方程的解 求出小于等于 \(2^n\) 的正整数中,有多少个数是该方程的解,答案对 \(10^9 + 7\) 取模 0x02 分析 第一问 试证明满足 \(x \bigopl…
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人微信公众号:负雪明烛 目录 题目描述 解题方法 递归 动态规划 日期 题目地址:https://leetcode-cn.com/problems/fei-bo-na-qi-shu-lie-lcof/ 题目描述 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即F(N)).斐波那契数列的定义如下: F(0) = 0, F(1) = 1 F(N) = F(N -…
斐波那契数列源于数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入的计算问题.假设某种兔子兔子,出生第一个月变成大兔子,大兔子再过一个月能生下一对小兔子,且一年内不会发生死亡.现有一对小兔子,请问一年后有多少只兔子? 分析这个数列其实是有规律的第一个月:一对小兔子第二个月:一对大兔子第三个月:一对大兔子+一对小兔子第四个月:两对大兔子+一对小兔子--仔细分析:数列如下 1 1 2 3 5 8 13 21前面两位的和都是第三位的结果1+1 = 21+2 =…
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n) { int preNum = 1; int prePreNum = 0; int result = 0; if(n ==0){ return 0; } if(n == 1){ return 1; } for(int i = 2; i <= n; i ++){ result = preNum +…
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 思路: 不考虑递归 用递推的思路 AC代码: class Solution { public: int Fibonacci(int n) { ) ; int fn1,fn2,fn; fn1=fn2=; ||n==) ; ;i<n;i++) { fn=fn1+fn2; fn1=fn2; fn2=fn; } return fn; } };…
题目: 斐波纳契数列 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: 前2个数是 0 和 1 . 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ... 样例 给定 1,返回 0 给定 2,返回 1 给定 10,返回 34 解题: 好像很简单的...递归是最简单的,貌似很耗时,结果:Time Limit Exceeded Java程序: 递归程序 class Solution { /…
****感觉都可以针对斐波那契写一个变形题目的集合了****** 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? class Solution { public: int rectCover(int number) { ) ; ||number==) return number; )+rectCover(number-); } };…