问题: Natural language sentence matching (NLSM),自然语言句子匹配,是指比较两个句子并判断句子间关系,是许多任务的一项基本技术.针对NLSM任务,目前有两种流行的深度学习框架.一种是Siamese network: 对两个输入句子通过同样的神经网络结构得到两个句子向量,然后对这两个句子向量做匹配.这种共享参数的方式可以有效减少学习的参数,让训练更方便.但是这种方式只是针对两个句子向量做匹配,没有捕捉到两个句子之间的交互信息.于是有了第二种框架matchi…
导言 本论文的工作主要是在 'matching-aggregation'的sentence matching的框架下,通过增加模型的特征(实现P与Q的双向匹配和多视角匹配),来增加NLSM(Natural language sentence matching)的accuracy Relation work 在NLSM中,主要有两个DL的框架: Siamese框架: 介绍:在该框架中,相同的神经网络编码器(例如,CNN或RNN)被单独地应用于两个输入句子,使得P和Q两个句子中的两个被编码到同一嵌入…
自然语言句子的双向.多角度匹配,是来自IBM 2017 年的一篇文章.代码github地址:https://github.com/zhiguowang/BiMPM 摘要          这篇论文主要提出了一个双向多角度匹配的模型(BiMPM),给定两个句子P和Q,首先模型分别将二者编码成BiLSTM encoder,然后在P→Q和Q→P两个方向对编码之后的句子进行匹配,在每一个方向的匹配当中,每个句子的每个time step 都从多个不同的角度与另外一个句子的全部time steps进行匹配.…
interaction  n. 互动;一起活动;合作;互相影响 capture vt.俘获;夺取;夺得;引起(注意.想像.兴趣)n.捕获;占领;捕获物;[计算机]捕捉 hence  adv. 从此;因此,所以;从此处 empirical  adj. 经验主义的;凭经验的;以观察或实验为依据的 variety  n.多样;种类;杂耍;变化,多样化 efficacy  n.功效;效力;效验;生产率 superiority  n.优越(性),优等;傲慢 heterogenous  adj.异种的,异质…
模型结构与原理 1. 基于CNN的句子建模 这篇论文主要针对的是句子匹配(Sentence Matching)的问题,但是基础问题仍然是句子建模.首先,文中提出了一种基于CNN的句子建模网络,如下图: 图中灰色的部分表示对于长度较短的句子,其后面不足的部分填充的全是0值(Zero Padding).可以看出,模型解决不同长度句子输入的方法是规定一个最大的可输入句子长度,然后长度不够的部分进行0值的填充:图中的卷积计算和传统的CNN卷积计算无异,而池化则是使用Max-Pooling. 卷积结构的分…
1. 对这本书的印象 2011年进入大学本科,C语言入门书籍如果我没记错的话应该是谭浩强的<C程序设计>,而用现在的眼光来看,这本书只能算是一本可用的教材,并不能说是一本好书.在自学操作系统课程期间,为了无障碍阅读书中的C语言示例,特地找到了一本大家公认的好书<The C Programming Language>,复习的过程中也可以填补一些以前的坑.在读了这一本书的第一章后,我认为这本书真的很不错,对程序的解释也是相当的详细,可以作为我的生涯进阶路上的一本重要参考书.…
本书下载地址:pcasm-book. 前言 8086处理器只支持实模式(real mode),不能满足安全.多任务等需求. Q:为什么实模式不安全.不支持多任务?为什么虚模式能解决这些问题? A: 以下是根据网上搜索结果及自己的理解做出的解答,有待斟酌.(1) 安全:实模式下用户可以访问任意的物理内存,可以修改系统程序或重要数据的内容,因而不安全.虚模式下用户能够访问的内存是由Descriptor Table中的信息决定的,其基地址是事先不确定的,而长度.权限均有限制,因此相比实模式更安全.(2…
Parsing Natural Scenes and Natural Language with Recursive Neural Networks作者信息: Richard Socher richard@socher.orgCliff Chiung-Yu Lin chiungyu@stanford.eduAndrew Y. Ng ang@cs.stanford.eduChristopher D. Manning manning@stanford.eduComputer Science Depa…
Spoken input (top left) is analyzed, words are recognized, sentences are parsed and interpreted in context, application-specific actions take place (top right); a response is planned, realized as a syntactic structure, then to suitably inflected word…
Speech and Natural Language Processing obtain from this link: https://github.com/edobashira/speech-language-processing A curated list of speech and natural language processing resources. Other lists can be found in this list. If you want to contribut…
解决的问题 自然语言推理,判断a是否可以推理出b.简单讲就是判断2个句子ab是否有相同的含义. 方法 我们的自然语言推理网络由以下部分组成:输入编码(Input Encoding ),局部推理模型(Local Inference Modeling ),和推理合成(inference composition).结构图如下所示: 垂直来看,上图显示了系统的三个主要组成部分:水平来看,左边代表称为ESIM的序列NLI模型,右边代表包含了句法解析信息的树形LSTM网络. 输入编码 # Based on…
翻译Pradeep Dasigi的一篇长文 Knowledge-Aware Natural Language Understanding 基于知识感知的自然语言理解 摘要 Natural Language Understanding (NLU) systems need to encode human gener- ated text (or speech) and reason over it at a deep semantic level. Any NLU system typically…
随着 Windows Phone 8.1 GDR1 + Cortana 中文版的发布,相信有很多用户或开发者都在调戏 Windows Phone 的语音私人助理 Cortana 吧,在世界杯的时候我亲测 Cortana 预测德国和阿根廷的比赛很准的.(题外话扯远了),可是作为开发者我们怎么将Cortana集成到应用中呢,今天我用一点时间给大家介绍一下如何使用 voice command 集成 Windows Phone 8.1 的应用. 首先要明确两个名词 Voice command & Voi…
More descriptive way to declare and use a method in programming languages At present, in most programming language, a method is declared in few parts: keyword, method name, method parameters and return type etc. E.g. function int add(int a, int b) \\…
一年之前,我做梦也想不到会来这里写技术总结.误打误撞来到了上海西南某高校,成为了文科专业的工科男,现在每天除了膜ha,就是恶补CS.导师是做计算语言学的,所以当务之急就是先自学计算机自然语言处理,打好底子准备做科研(认真脸). 进入正题,从图书馆找了本“Natural Language Processing with Python” (影印版),书长这个样子,作者是Steven Bird, Ewan Klein和Edward Loper.粘贴个豆瓣链接供参考:https://book.douba…
Focus, Follow, and Forward Stanford CS224d 课程笔记 Lecture1 Stanford CS224d 课程笔记 Lecture1 Stanford大学在2015年开设了一门Deep Learning for Natural Language Processing的课程,广受好评.并在2016年春季再次开课.我将开始这门课程的学习,并做好每节课的课程笔记放在博客上.争取做到每周一更吧.本文是第一篇. NLP简介 NLP,全名Natural Languag…
spaCy is a library for advanced natural language processing in Python and Cython. spaCy is built on the very latest research, but it isn't researchware. It was designed from day one to be used in real products. spaCy currently supports English, Germa…
https://www.programmableweb.com/news/how-5-natural-language-processing-apis-stack/analysis/2014/07/28 The world is awash in digital data. The challenge: making sense of that data. To tackle that challenge, a growing number of companies are turning to…
Dynamic Multimodal Instance Segmentation Guided by Natural Language Queries 2018-09-18 09:58:50 Paper:http://openaccess.thecvf.com/content_ECCV_2018/papers/Edgar_Margffoy-Tuay_Dynamic_Multimodal_Instance_ECCV_2018_paper.pdf GitHub:https://github.com/…
Tracking by Natural Language Specification 2018-04-27 15:16:13  Paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Tracking_by_Natural_CVPR_2017_paper.pdf Code: https://github.com/QUVA-Lab/lang-tracker    The Proposed Models: 本文更加关注的是 Mo…
论文笔记之:Natural Language Object Retrieval 2017-07-10  16:50:43   本文旨在通过给定的文本描述,在图像中去实现物体的定位和识别.大致流程图如下: 此处,作者强调了一点不同之处: Natural language object retrieval differs from text-based image retrieval task as it involves spatial information about objects with…
CS224n: Natural Language Processing with Deep Learning http://cs224d.stanford.edu/syllabus.html https://web.stanford.edu/class/cs224n/syllabus.html 论文 https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports.html…
http://www.xue63.com/toutiaojy/20180327G0DXP000.html 本文提出一种简单的自然语言推理任务下的神经网络结构,利用注意力机制(Attention Mechanism)将问题分解为可以单独解决的子问题,从而实现了并行化.在斯坦福自然语言推理(SNLI)数据集上,本文工作取得了极好的效果,并且比之前的工作减少了一个数量级的参数数量,而且模型结构不依赖任何单词顺序信息.延伸模型加入了句子内的Attention以考虑一部分单词词序信息,得到更好的提升效果.…
第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings) 词汇表征(Word Representation) 上周我们学习了 RNN.GRU 单元和 LSTM 单元.本周你会看到我们如何把这些知识用到 NLP 上,用于自然语言处理,深度学习已经给这一领域带来了革命性的变革.其中一个很关键的概念就是词嵌入(word embeddings),这是语言表示的一种方式,可以让算法自动的理解一些类似的词,比如男人对女人,比如国王对王后,…
-<Natural Language Processing with Python> 链接:https://pan.baidu.com/s/1_oalRiUEw6bXbm2dy5q_0Q 密码:r318…
原文链接:https://yq.aliyun.com/articles/8301 作者:李永彬 发布时间:2016-03-17 16:37:47 自然语言理解(Natural Language Understanding,NLU)以语言学为基础,融合逻辑学.心理学和计算机科学等学科,试图解决以下问题:语言究竟是怎样组织起来传输信息的?人又是怎样从一连串的语言符号中获取信息的?换种表达就是,通过语法.语义.语用的分析,获取自然语言的语义表示. 自然语言理解的结果,就是要获得一个语义表示(seman…
Week 2 Quiz: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入) 1.Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation…
第二周 自然语言处理与词嵌入(Natural Language Processing and Word Embeddings) 2.1 词汇表征(Word Representation) 词汇表示,目前为止一直都是用词汇表来表示词,上周提到的词汇表,可能是 10000 个单词,我们一直用 one-hot 向量来表示词.这种表示方法的一大缺点就是它把每个词孤立起来,这样使得算法对相关词的泛化能力不强. 换一种表示方式会更好,如果不用 one-hot 表示,而是用特征化的表示来表示每个词,man,w…
这篇文章提出了DIIN(DENSELY INTERACTIVE INFERENCE NETWORK)模型. 是解决NLI(NATURAL LANGUAGE INFERENCE)问题的很好的一种方法. 模型结构 首先, 论文提出了IIN(Interactive Inference Network)网络结构的组成, 是一种五层的结构, 每层的结构有其固定的作用, 但是每层的实现可以使用任意能达到目的的子模型. 整体的结构如下图: 模型结构从上到下依次为: Embedding Layer: 常见的对w…
[英语魔法俱乐部——读书笔记] 3 高级句型-简化从句&倒装句(Reduced Clauses.Inverted Sentences):(3.1)从属从句简化的通则.(3.2)形容词从句简化.(3.3)名词从句简化.(3.4)副词从句简化.(3.5)简化从句练习.(3.6)倒装句 3.1 从属从句简化的通则(Generally Reduction Rules of Dependent Clause) 3.1.1 简化从句:英语语法以句子为研究对象,而其句型也分为简单句.复句和合句之分,其中简单句…