正解:kmp+dp+矩阵优化 解题报告: 传送门! 啊刚说想做矩阵优化dp的字符串题就找到辣QwQ虽然不是AC自动机的但都差不多嘛QwQ 首先显然可以想到一个dp式?就f[i][j]:凑出i位了,在s串中匹配到了第j位 接着依然很显然地可以想到要转移就要求下kmp 所以就求个kmp,就能得到转移式:f[i+1][nxt[(j,d)]]+=f[i][j] 哦解释下nxt[(j,d)],就这儿显然要枚举填哪一个数d然后从j一直跳一直跳跳到匹配位置的嘛,所以我这个的意思是说第j位是d的匹配位置,我知道…
Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0 Input 第一行输入N,M,K.接下来一行输入M位的数. N<=10^9,M<=20,K<=1000 Output 阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的…
[BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2-Am有M位,不出现是指X1X2-Xn中没有恰好一段等于A1A2-Am. A1和X1可以为0 \(0 \leq X_i \leq 9,0\leq Ai\leq 9,m \leq 20,n \leq 10^9\) 分析 先考虑暴力的思路,设\(dp[i][j]\)表示前i位数与不吉利数字匹配了前…
传送门 大佬讲的真吼->这里 首先考虑dp,设$f[i][j]$表示长串匹配到第$i$位,短串最多匹配到$j$位时的方案数 那么答案就是$\sum_{i=0}^{m-1}f[n][i]$ 然后考虑一下dp的转移,一种是加进的新字符$i+1$与$j+1$匹配,那么$dp[i][j]$可以直接转移到$dp[i+1][j+1]$ 然后如果不匹配怎么办?这种时候,有可能新串的一个后缀和短串的一个前缀有了匹配 对于这一点,我们就是要知道,对于一个匹配到长度为$j$的串,转移到$k$的串的方案,也就对于长度…
http://www.lydsy.com/JudgeOnline/problem.php?id=1009 好神的题orzzzzzzzzzz 首先我是连递推方程都想不出的人...一直想用组合来搞..看来我是sb.. 设f[i,j]表示前i个字符匹配了前j个不吉利数字的方案,即i-j+1~i都是不吉利数字 那么答案就是sigma{f[n,i], 0<=i<m} 转移是 f[i+1,k]=sum{f[i, j],枚举i+1的字符后,k是i+1字符和不吉利数字匹配1~k,0<=k<=j}…
1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2745  Solved: 1694[Submit][Status][Discuss] Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2..…
标题效果:给定的长度m数字字符串s.求不包括子s长度n数字串的数目 n<=10^9 看这个O(n)它与 我们不认为这 令f[i][j]长度i号码的最后的字符串j位和s前者j数字匹配方案 例如,当s至12312时间 f[i][3]它表示的长度i.123结尾且不包括子串"12312"的方案数 a[x][y]为f[i-1][x]转移至f[i][y]的方案数 换句话说(可能描写叙述不清楚) a[x][y]为s的长度为x的前缀加上一个数字后 后缀能够与最长长度为y的前缀匹配 这个数字能够有…
    看出来矩阵加速也没看出来KMP…… 题目描述 阿申准备报名参加 GT 考试,准考证号为\(N\)位数\(X_1,X_2…X_n(0\le X_i\le9)\),他不希望准考证号上出现不吉利的数字. 他的不吉利数学\(A_1,A_2…A_m(0\le A_i\le 9)\)有\(M\)位,不出现是指\(X_1,X_2…X_n\)中没有恰好一段等于\(A_1,A_2…A_m\)​,\(A_1\)和\(X_1\)可以为\(0\). 输入输出格式 输入格式: 第一行输入\(N,M,K\),接下来…
题意 题目链接 Sol 设\(f[i][j]\)表示枚举到位置串的第i位,当前与未知串的第j位匹配,那么我们只要保证在转移的时候永远不会匹配即可 预处理出已知串的每个位置加上某个字符后能转移到的位置,矩阵快速幂优化一下 复杂度\(O(M^3 \log n)\) #include<bits/stdc++.h> using namespace std; const int MAXN = 22; int N, M, mod, s[MAXN], trans[MAXN][10], p[MAXN], g[…
题目链接 设f[i][j]为当前是第i位考号.现在匹配到第j位(已有j-1位和A[]匹配)的方案数 因为假如当前匹配j位,如果选择的下一位与A[j+1]不同,那么新的匹配位数是fail[j]而不是0,那么设由匹配j位转移到匹配k位的方案数为t[j][k] 那么 \(f[i][j] = ∑f[i-1][k]*t[k][j]\) 这个式子是线性的,于是可以先计算出t矩阵的n次幂,最后乘以初始矩阵 t矩阵枚举当前匹配多少位后,枚举下次选择的数即可,利用KMP计算现在匹配的位数 //824kb 24ms…