Pytorch 类别平衡化处理】的更多相关文章

采用  WeightedRandomSampler: def make_weights_for_balanced_classes(images, nclasses): count = [0] * nclasses for item in images: count[item[1]] += 1 weight_per_class = [0.] * nclasses N = float(sum(count)) for i in range(nclasses): weight_per_class[i]…
目录 0,可视化的重要性: 1,特征图(feture map) 2,卷积核权重 3,卷积核最匹配样本 4,类别激活图(Class Activation Map/CAM) 5,网络结构的可视化 0,可视化的重要性: 深度学习很多方向所谓改进模型.改进网络都是在按照人的主观思想在改进,常常在说模型的本质是提取特征,但并不知道它提取了什么特征.哪些区域对于识别真正起作用.也不知道网络是根据什么得出了分类结果.为了增强结果的可解释性,需要给出模型的一些可视化图来证明模型或新methods对于任务的作用,…
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom Variable的一种,常被用于模块参数(module parameter). Parameters 是 Variable 的子类.Paramenters和Modules一起使用的时候会有一些特殊的属性,即:当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参…
1. 概况 1.1 任务 口语理解(Spoken Language Understanding, SLU)作为语音识别与自然语言处理之间的一个新兴领域,其目的是为了让计算机从用户的讲话中理解他们的意图.SLU是口语对话系统(Spoken Dialog Systems)的一个非常关键的环节.下图展示了口语对话系统的主要流程. SLU主要通过如下三个子任务来理解用户的语言: 领域识别(Domain Detection) 用户意图检测(User Intent Determination) 语义槽填充(…
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html 系列教程总目录传送门:我是一个传送门 本系列教程对应的 jupyter notebook 可以在我的Github仓库下载: 下载地址:https://github.com/Holy-Shine/Pytorch-notebook 1. 数据准备 数据下载通道: 点击这里下载数…
[深度应用]·实战掌握PyTorch图片分类简明教程 个人网站--> http://www.yansongsong.cn/ 项目GitHub地址--> https://github.com/xiaosongshine/image_classifier_PyTorch/ 1.引文 深度学习的比赛中,图片分类是很常见的比赛,同时也是很难取得特别高名次的比赛,因为图片分类已经被大家研究的很透彻,一些开源的网络很容易取得高分.如果大家还掌握不了使用开源的网络进行训练,再慢慢去模型调优,很难取得较好的成…
更换了数据集, 在计算交叉熵损失时出现错误 : cuda runtime error (59) : device-side assert triggered at /pytorch/aten/src/THC/generic/THCTensorMa 解决检查两个问题: 1. 模型输出label数量 是否与 标签类别数量相同 <label为 男,女, 位置, 但是我模型设计只有男/女> 2. label是否有-1的情况,需要提前过滤掉,类似下面这样的标签…
卷积神经网络的训练是耗时的,很多场合不可能每次都从随机初始化参数开始训练网络.   1.训练 pytorch中自带几种常用的深度学习网络预训练模型,如VGG.ResNet等.往往为了加快学习的进度,在训练的初期我们直接加载pre-train模型中预先训练好的参数,所以这里使用的网络是: torchvision.models.Resnet34(pretrained=True) 然后更改其最后的全连接层.因为resnet网络最后一层分类层fc是对1000种类型进行划分,对于自己的数据集,这里进行的是…
前言 上文介绍了数据读取.数据转换.批量处理等等.了解到在PyTorch中,数据加载主要有两种方式: 1.自定义的数据集对象.数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset.且须实现__len__()和__getitem__()两个方法. 2.利用torchvision包.torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet.COCO.MNIST.LSUN等数据集,可通过诸如torchvision.data…
在使用Pytorch时经常碰见这些函数cross_entropy,CrossEntropyLoss, log_softmax, softmax.看得我头大,所以整理本文以备日后查阅. 首先要知道上面提到的这些函数一部分是来自于torch.nn,而另一部分则来自于torch.nn.functional(常缩写为F).二者函数的区别可参见 知乎:torch.nn和funtional函数区别是什么? 下面是对与cross entropy有关的函数做的总结: torch.nn torch.nn.func…
Pytorch预训练模型以及修改 pytorch中自带几种常用的深度学习网络预训练模型,torchvision.models包中包含alexnet.densenet.inception.resnet.squeezenet.vgg等常用网络结构,并且提供了预训练模型,可通过调用来读取网络结构和预训练模型(模型参数).往往为了加快学习进度,训练的初期直接加载pretrain模型中预先训练好的参数.加载model如下所示: import torchvision.models as models 1.加…
PyTorch Prerequisites - Syllabus for Neural Network Programming Series PyTorch先决条件 - 神经网络编程系列教学大纲 每个人都在发生什么事?欢迎来到PyTorch神经网络编程系列. 在这篇文章中,我们将看看做好最佳准备所需的先决条件. 我们将对该系列进行概述,并对我们将要开展的项目进行预览. 这将使我们对我们将要学习什么以及在系列结束时我们将拥有哪些技能有一个很好的了解. 不用多说,让我们直接了解细节. 此系列需要两个…
首先要熟悉一下怎么使用PyTorch来实现前馈神经网络吧.为了方便理解,我们这里只拿只有一个隐藏层的前馈神经网络来举例: 一个前馈神经网络的源码和注释如下:比较简单,这里就不多介绍了. class NeuralNet(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNet, self).__init__() self.fc1 = nn.Linear(input_size, hidd…
https://github.com/chenyuntc/pytorch-book/blob/v1.0/chapter5-常用工具/chapter5.ipynb 希望大家直接到上面的网址去查看代码,下面是本人的笔记 在训练神经网络过程中,需要用到很多工具,其中最重要的三部分是:数据.可视化和GPU加速.本章主要介绍Pytorch在这几方面的工具模块,合理使用这些工具能够极大地提高编码效率. 1.数据处理 PyTorch提供了几个高效便捷的工具,以便使用者进行数据处理或增强等操作,同时可通过并行化…
3)plotting绘图 我们已经包装了几种常见的plot类型,以便轻松创建基本的可视化.这些可视化是由Plotly驱动的. Visdom支持下列API.由 Plotly 提供可视化支持. vis.scatter : 2D 或 3D 散点图 vis.line : 线图 vis.stem : 茎叶图 vis.heatmap : 热力图 vis.bar : 条形图 vis.histogram: 直方图 vis.boxplot : 箱型图 vis.surf : 表面图 vis.contour : 轮廓…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 本章介绍的nn模块是构建与autograd之上的神经网络模块 除了nn外还会介绍神经网络中常用的工具,比如优化器optim.初始化init等 1.nn.Module torch的核心数据结构是Module,它是一个抽象的概念,既可以表示神经网络中的某个层,也可以表示一个包含很多层的神经网络 在实际使用中,最常见的做法是继承nn.Modu…
参考:https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py TRAINING A CLASSIFIER 到这里,你已经知道怎么定义神经网络,计算损失和更新网络的权重 现在你应该考虑: What about data? 通常,当你必须要处理一些图片.文本.音频或视频数据时,你可以使用标准的python包去下载数据到一个numpy数组…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 pytorch的设计遵循tensor-> variable(autograd)-> nn.Module三个由低到高的抽象层次,分别代表高维数组(张量).自动求导(变量)和神经网络(层/模块).这三个抽象之间联系紧密,可以同时进行修改和操作 在IPython和Jupyter notebook两个工具中使用了Jupyter noteboo…
参考:https://pytorch.org/tutorials/beginner/data_loading_tutorial.html DATA LOADING AND PROCESSING TUTORIAL 在解决任何机器学习问题时,都需要花费大量的精力来准备数据.PyTorch提供了许多工具来简化数据加载,希望能使代码更具可读性.在本教程中,我们将看到如何加载和预处理/增强非平凡数据集中的数据. 为了运行下面的教程,请确保你已经下载了下面的数据包: scikit-image:为了图片的输入…
上文介绍了数据读取.数据转换.批量处理等等.了解到在PyTorch中,数据加载主要有两种方式: 1. 自定义的数据集对象.数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset.且须实现__len__()和__getitem__()两个方法. 2. 利用torchvision包.torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet.COCO.MNIST.LSUN等数据集,可通过诸如torchvision.datas…
适用场景:一个输入对应多个label,或输入类别间不互斥 调用函数: 1. Pytorch使用torch.nn.BCEloss 2. Tensorflow使用tf.losses.sigmoid_cross_entropy 3. Caffe使用SigmoidCrossEntropyLoss 在output和target之间构建binary cross entropy,其中i为每一个类. 以pytorch为例:Caffe,TensorFlow版本类比,输入均为相同形式的向量 m = nn.Sigmo…
  太棒啦!到目前为止,你已经了解了如何定义神经网络.计算损失,以及更新网络权重.不过,现在你可能会思考以下几个方面: 0x01 数据集 通常,当你需要处理图像.文本.音频或视频数据时,你可以使用标准的python包将数据加载到numpy数组中.然后你可以将该数组转换成一个torch.*Tensor. 对于图像,Pillow.OpenCV这些包将有所帮助. 对于音频,可以使用scipy和librosa包. 对于文本,无论是基于原始的Python还是Cython的加载,或者NLTK和SpaCy都将…
分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交叉熵,脑子里就会出现这个东西: 随后我们脑子里可能还会出现Sigmoid()这个函数: pytorch中的CrossEntropyLoss()函数实际就是先把输出结果进行sigmoid,随后再放到传统的交叉熵函数中,就会得到结果. 那我们就先从sigmoid开始说起,我们知道sigmoid的作用其实…
首次体验Pytorch,本文参考于:github and PyTorch 中文网人脸相似度对比 本文主要熟悉Pytorch大致流程,修改了读取数据部分.没有采用原作者的ImageFolder方法:   ImageFolder(root, transform=None, target_transform=None, loader=default_loader).而是采用了一种更自由的方法,利用了Dataset 和 DataLoader 自由实现,更加适合于不同数据的预处理导入工作. Siamese…
pytorch之nn.Conv1d详解 之前学习pytorch用于文本分类的时候,用到了一维卷积,花了点时间了解其中的原理,看网上也没有详细解释的博客,所以就记录一下. Conv1dclass torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) in_channels(int) – 输入信号的通道.在文本分类中,即为词向量的维度o…
1.RNN简介 rnn,相比很多人都已经听腻,但是真正用代码操练起来,其中还是有很多细节值得琢磨. 虽然大家都在说,我还是要强调一次,rnn实际上是处理的是序列问题,与之形成对比的是cnn,cnn不能够处理序列问题,因为它没有记忆能力,那为什么rnn能够处理序列问题以及有记忆能力呢? 首先简单介绍一下rnn以及lstm的背景,这里给出两个链接,链接1,链接2 以最简单的rnn为例,如下图 上面是rnn展开成3个单元的结构示意图,h_t是上一个时刻的输出,这个输出送到下一个时刻的输入:x_t是当前…
代码地址:https://github.com/jwyang/faster-rcnn.pytorch 1.fasterRCNN.train():这个不是让网络进行训练,而是让module in training mode,有些module在traing model和testing model下不同,比如bn 即self.training这个成员变量为true(这个成员变量属于nn.Module,fasterRCNN继承了这个成员变量),以下是train成员函数的源码 2.bn的train和tes…
原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于python语言的的科学计算包,主要分为两种受众: 能够使用GPU运算取代NumPy 提供最大灵活度和速度的深度学习研究平台 开始 Tensors Tensors与numpy的ndarray相似,且Tensors能使用GPU进行加速计算. 创建5 * 3的未初始化矩阵: 创建并随机初始化矩阵: 创建一…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8524937.html 论文: SphereFace: Deep Hypersphere Embedding for Face Recognition https://arxiv.org/abs/1704.08063 http://wyliu.com/papers/LiuCVPR17v3.pdf 官方代码: https://github.com/wy1iu/sphereface pytorch代码:…
原文: http://www.voidcn.com/article/p-rtzqgqkz-bpg.html 最近看了下 PyTorch 的损失函数文档,整理了下自己的理解,重新格式化了公式如下,以便以后查阅. 注意下面的损失函数都是在单个样本上计算的,粗体表示向量,否则是标量.向量的维度用 N 表示. nn.L1Loss loss(x,y)=1N∑i=1N|x−y| nn.SmoothL1Loss 也叫作 Huber Loss,误差在 (-1,1) 上是平方损失,其他情况是 L1 损失. los…