P4180 [模板]严格次小生成树[BJWC2010] 倍增(LCA)+最小生成树 施工队挖断学校光缆导致断网1天(大雾) 考虑直接枚举不在最小生成树上的边.但是边权可能与最小生成树上的边相等,这样删边时权值不改变,就不满足条件了 所以我们可以先用倍增处理出最小生成树上任意2点之间的最大边权和次大边权 枚举每条不在最小生成树上的边,接到树上,再删去最大边(与枚举边的边权不等)或次大边(最大边与枚举边的边权相等),做个判断 判断边(u,v)时 我们只要询问(u,lca)和(v,lca)就可以了 找…
P4180 [模板]严格次小生成树[BJWC2010] 题意 题目描述 小\(C\)最近学了很多最小生成树的算法,\(Prim\)算法.\(Kurskal\)算法.消圈算法等等.正当小\(C\)洋洋得意之时,小\(P\)又来泼小\(C\)冷水了.小\(P\)说,让小\(C\)求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是\(E_M\),严格次小生成树选择的边集是\(E_S\),那么需要满足:(\(value(e)\)表示边\(e\)的权值)\…
P4180 [模板]严格次小生成树[BJWC2010] 题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值)$\sum_{e \in E_M}value(e)<\sum_{e \in E_S}value(e)$ 这下…
题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值) \sum_{e \in E_M}value(e)<\sum_{e \in E_S}value(e)∑e∈EM​​value(e)<∑e∈ES​​value(e)…
题目链接:https://www.luogu.org/problemnew/show/P4180 这个题卡树剖.记得开O2. 这个题inf要到1e18. 定理:次小生成树和最小生成树差距只有在一条边上 非严格次小生成树:枚举每一条不在最小生成树上的边,加入到最小生成树中构成一个环.删去这个环上的最大值.(此最大值有可能与加入生成树中的边相等,故为非严格次小生成树.)重复此操作取min,得到次小生成树.(基于kruskal实现.) 严格次小生成树:与非严格次小生成树类似,不同在于为了避免删去环上的…
严格次小生成树模板 算法流程: 先用克鲁斯卡尔求最小生成树,然后给这个最小生成树树剖一下,维护边权转点权,维护最大值和严格次大值. 然后枚举没有被选入最小生成树的边,在最小生成树上查一下这条边的两端点的路径上的最长边,如果最长边等于枚举到的边的边权,那么选次长边(没有次长边的话直接跳过),然后在最小生成树的权值上减去路径上最/次长边,加上当前枚举的边的边权 因为如果加入枚举的边的,那么就形成了一个环,需要断开一条边 注意一开始单点次小值赋为0 #include<iostream> #inclu…
题目链接 题意如题. 这题作为我们KS图论的T4,我直接打了个很暴力的暴力,骗了20分.. 当然,我们KS里的数据范围远不及这题. 这题我debug了整整一个晚上还没debug出来,第二天早上眼前一亮,改出来了. 严格次小生成树,顾名思义,就是数值严格小于最小生成树的最大生成树. \(\text{邓杰:一个很暴力的方法就是,求出最小生成树后,枚举不在生成树里的边,把这条边加进去,然后就会形成一个环,把这个环里最大的边删掉,然后对新形成的生成树取最小值}\) 其实正解应该是吧就是对这个"暴力&qu…
题目链接\(Click\) \(Here\). 题意就是要求一个图的严格次小生成树.以前被题面吓到了没敢做,写了一下发现并不难. 既然要考虑次小我们就先考虑最小.可以感性理解到一定有一种次小生成树,可以由最小生成树删一条边再加一条边得到.我们枚举加上去的这一条边,加上去以后原\(mst\)会成为一个基环树,想让它次小就在这个环里找一条最长的边(不包含新加进去的)删掉就好.放在树上来讲,就是找到\(u\)到\(v\)路径上的最大值.这样我们就有了非严格次小生成树. 严格要怎么处理?我们需要排除新加…
树上的路径怎么能没有树剖 显然,次小生成树和最小生成树只在一条边上有差距,于是我们就可以枚举这一条边,将所有边加入最小生成树,之后再来从这些并不是那么小的生成树中找到那个最小的 我们往最小生成树里加入一条边一定会在这条边的两个端点之间形成一个环,为了让维持树的结构,我们要断开环上的一条边,而为了让得到的新生成树尽量小,于是我们就选择最大的一条边断开,但是为了保证严格次小,在这条边和最大边长度相同时,断开一条严格次大的边 而从树上找两点之间的最大边和严格次大边,我们显然可以直接上树剖 我们可以维护…
题目描述 小 \(C\) 最近学了很多最小生成树的算法,\(Prim\) 算法.\(Kruskal\) 算法.消圈算法等等.正当小\(C\)洋洋得意之时,小\(P\)又来泼小\(C\)冷水了.小\(P\)说,让小\(C\)求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是\(E_M\),严格次小生成树选择的边集是\(E_S\),那么需要满足:(value(e)表示边e的权值)\(\sum_{e\in E_M}value(e)<\sum_{e\in…
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小生成树弄出来,因为要求次小生成树.至于为什么次小一定只在最小的基础上改变了一条边,我也不会严谨的证明......打表找规律大法好 剩下的可以有一堆数据结构来维护最大值和次大值(原理两位巨佬都讲清楚了,这里只分析一下算法的优劣) kruscal+倍增+LCA 山楠巨佬的做法,我也写了这一种.复杂度\(…
题目大意:给定一个 N 个顶点,M 条边的带权无向图,求该无向图的一个严格次小生成树. 引理:有至少一个严格次小生成树,和最小生成树之间只有一条边的差异. 题解: 通过引理可以想到一个暴力,即:先求出最小生成树,并记录树边,再枚举删除 MST 中的每一条边,每次重新做一次最小生成树算法,并将计算出来的所有结果取最小值即为答案.以 Kruskal 算法为例,暴力的时间复杂度为 \(O(n^2logn)\). 现在可以考虑在已知最小生成树的基础上,枚举每条非树边,将该边加入最小生成树中,并删去加入边…
题目链接 Solution 有几点关键,首先,可以证明次小生成树一定是由最小生成树改变一条边而转化来. 所以需要枚举所有非最小生成树的边\((u,v)\).并且找到 \(u\) 到 \(v\) 的边中最大边和次大边. 为什么要找次大边呢?? 因为可能最大边与要替换的边长度相等,那么这种条件生成的便不是严格的次小生成树. 然后找到 \(u,v\) 之间的次大和最大边有两种方式: 树链剖分+线段树维护 剖分最小生成树,然后用线段树维护. 此时线段树节点转移时要考虑左右节点的次大和最大的 \(4\)…
题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值) \sum_{e \in E_M}value(e)<\sum_{e \in E_S}value(e)∑e∈EM​​value(e)<∑e∈ES​​value(e)…
1578. 次小生成树初级练习题 ☆   输入文件:mst2.in   输出文件:mst2.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 求严格次小生成树 [输入格式] 第一行包含两个整数N 和M,表示无向图的点数与边数. 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z. [输出格式] 包含一行,仅一个数,表示严格次小生成树的边权和.(数据保证必定存在严格次小生成树) [样例输入] 5 6 1 2 1 1 3 2 2 4 3…
原文必点 原题链接 题目描述 给定一张\(N\) 个点$ M $条边的无向图,求无向图的严格次小生成树. 设最小生成树的边权之和为\(sum\),严格次小生成树就是指边权之和大于\(sum\)的生成树中最小的一个. 输入格式 第一行包含两个整数\(N\)和\(M\). 接下来\(M\)行,每行包含三个整数\(x,y,z\),表示点\(x\)和点\(y\)之前存在一条边,边的权值为\(z\). 输出格式 包含一行,仅一个数,表示严格次小生成树的边权和.(数据保证必定存在严格次小生成树) 数据范围…
虽然中途写的时候有点波折,但是最后一发A,还是有点爽. 这虽然是个模板题,但还是涉及到许多知识的= = 首先我们求出一个最小生成树,并且求出其边权和\(ans\).那么现在考虑加入其它的边,每次加入在树上就会形成一个环,这时因为是一个生成树,所以我们要删去一条边.很明显现在就要删去最小生成树上最大的边即可. 但这里有个问题,题目要求严格次小.假设现在加入的边权为\(w\),树上在环中的部分边权最大为\(maxw\),那么当\(w=maxw\)时,很显然我们要求一个次大边权\(maxw2\)来替换…
首次采用了压行,感觉还不错. Code: // luogu-judger-enable-o2 #include <cstdio> #include <algorithm> #include <cstring> #include <string> using namespace std; void setIO(string a){ freopen((a+".in").c_str(),"r",stdin); //freop…
这道题本身思维难度不大,但综合性强,细节多 在其上浪一个早上,你的 最小生成树 树链剖分 线段树 DEBUG能力... 都大幅提升 细节与思路都在代码里面了. 欢迎hack. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #define R(a,b,c) for(register int a = (b); a &l…
The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23942   Accepted: 8492 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spanning Tree): Consider a connected, undire…
1.次小生成树 非严格次小生成树:边权和小于等于最小生成树的边权和 严格次小生成树:    边权和小于最小生成树的边权和 算法:先建好最小生成树,然后对于每条不在最小生成树上的边(u,v,w)如果我们把它放到最小生成树中,会形成一个环,那么再从这个环上删除一个除加进去的边外且小于(或等于)当前w的最大权值边,可以用倍增(或树剖)维护链上的最大值来实现非严格的,对于严格的来说,最大值可能等于w,那么就再维护一个次大值. P4180 [模板]严格次小生成树[BJWC2010] 代码: #pragma…
https://www.luogu.org/problemnew/show/P4180#sub 严格次小生成树,即不等于最小生成树中的边权之和最小的生成树 首先求出最小生成树,然后枚举所有不在最小生成树里的边,找出最小增量, 如果将一条不在最小生成树里的边加入生成树,那么就会形成环 如图,绿色为最小生成树,如果将红色边加入,就在紫色区域构成了环 那么现在增量就是用红色边的边权 - 紫色区域内最大的绿色边的边权这里红色边的边权一定大于等于紫色区域内最大的绿色边的边权(由最小生 成树的构成可知),如…
P4180 [BJWC2010]严格次小生成树 P4180 题意 求出一个无向联通图的严格次小生成树.严格次小生成树的定义为边权和大于最小生成树的边权和但不存在另一棵生成树的边权和在最小生成树和严格次小生成树之间(不相等). 思路 先求出一颗最小生成树,发现严格次小生成树一定是其断了一条边并加了一条边且边权和的增加量最小. 那么我们继续在最小生成树上做.对于每一条不是最小生成树上的边,求出其两端两点间在最小生成树上路径上的边的最大值.然鹅,如果用倍增LCA找,发现如果求出来的最大值与该边权值相等…
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小生成树弄出来,因为要求次小生成树.至于为什么次小一定只在最小的基础上改变了一条边,我也不会严谨的证明......打表找规律大法好 剩下的可以有一堆数据结构来维护最大值和次大值(原理两位巨佬都讲清楚了,这里只分析一下算法的优劣) kruscal+倍增+LCA 山楠巨佬的做法,我也写了这一种.复杂度\(…
洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵树中的n-1条边为“树边” 其他m-n+1条边为“非树边” 枚举每条非树边(x,y,z)添加到最小生成树中 可以在x,y之间构成一个环 设x,y之间的路径最大值为val1 次大值为val2(val1>val2) 则有以下两种情况 当z>val1时 则把val1对应的边换成(x,y,z) 得到一个候…
The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:34617   Accepted: 12637 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spanning Tree): Consider a connected, undire…
/*次小生成树 题意:给你一些路径,现在将一部分路径权值减少后问是否可以替代最小生成树里面的边. 解:次小生成树,即将这条边连上,构成一个环 求出任意两点路径之间的除了这条边的最大值,比较这个最大值>=这条边,说明可以替换. prime算法次小生成树模板 */ #include<stdio.h> #include<string.h> #define N 1100 #define inf 0x3fffffff int ma[N][N]; int Min(int a,int b)…
Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties…
次小生成树模板,别忘了判定不存在最小生成树的情况 #include <iostream> #include <cstdio> #include <cstring> using namespace std; + ; const int inf = 0x3f3f3f3f; int MAX[maxn][maxn], mp[maxn][maxn], dis[maxn], pre[maxn]; int t, n, m; bool vis[maxn], used[maxn][max…
[BJWC2010]严格次小生成树 题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值) \sum_{e \in E_M}value(e)<\sum_{e \in E_S}value(e)∑e∈EM​​value(e…