众所周知,机器学习可以大体分为三大类:监督学习.非监督学习和半监督学习.监督学习可以认为是我们有非常多的labeled标注数据来train一个模型,期待这个模型能学习到数据的分布,以期对未来没有见到的样本做预测.那这个性能的源头--训练数据,就显得非常感觉.你必须有足够的训练数据,以覆盖真正现实数据中的样本分布才可以,这样学习到的模型才有意义.那非监督学习就是没有任何的labeled数据,就是平时所说的聚类了,利用他们本身的数据分布,给他们划分类别.而半监督学习,顾名思义就是处于两者之间的,只有…
虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解.因此特意先对深度学习中的相关基础概念做一下总结.先看看前向传播算法(Forward propagation)与反向传播算法(Back propagation). 1.前向传播 ​​ 如图所示,这里讲得已经很清楚了,前向传播的思想比较简单. 举个例子,假设上一层结点i,j,k,…等一些结点与本层的结点w有连接,那么结点w的值怎么算呢?就是通过上一层的i,j,k等结点以及对应的连接权值进行加权和运算,最终结果再…
动手实践标签传播算法 复现论文:Learning with Local and Global Consistency1 lgc 算法可以参考:DecodePaper/notebook/lgc 初始化算法 载入一些必备的库: from IPython.display import set_matplotlib_formats %matplotlib inline #set_matplotlib_formats('svg', 'pdf') import numpy as np import matp…
0. 社区划分简介 0x1:非重叠社区划分方法 在一个网络里面,每一个样本只能是属于一个社区的,那么这样的问题就称为非重叠社区划分. 在非重叠社区划分算法里面,有很多的方法: 1. 基于模块度优化的社区划分 基本思想是将社区划分问题转换成了模块度函数的优化,而模块度是对社区划分算法结果的一个很重要的衡量标准. 模块度函数在实际求解中无法直接计算得到全局最优解析解(类似深度神经网络对应的复杂高维非线性函数),所以通常是采用近似解法,根据求解方法不同可以分为以下几种方法: . 凝聚方法(down t…
转载请注明出处:http://www.cnblogs.com/bethansy/p/6953625.html LPA算法的思路: 首先每个节点有一个自己特有的标签,节点会选择自己邻居中出现次数最多的标签,如果每个标签出现次数一样多,那么就随机选择一个标签替换自己原始的标签,如此往复,直到每个节点标签不再发生变化,那么持有相同标签的节点就归为一个社区. 算法优点:思路简单,时间复杂度低,适合大型复杂网络. 算法缺点:众所周知,划分结果不稳定,随机性强是这个算法致命的缺点. 体现在:(1)更新顺序.…
package lpa; import java.util.Arrays; import java.util.HashMap; import java.util.Map; public class LPA { public static float sigma = 1; public static int tag_num = 2; public static void main(String[] args) { float[][] data = { {1,1}, {1,2}, {2,1}, {2…
其中部分转载的社区发现SLPA算法文章 一.概念 社区(community)定义:同一社区内的节点与节点之间关系紧密,而社区与社区之间的关系稀疏. 设图G=G(V,E),所谓社区发现是指在图G中确定nc(>=1)个社区C={C1,C2,...,Cnv},使得各社区的顶点集合构成V的一个覆盖. 若任意两个社区的顶点集合的交际均为空,则称C为非重叠社区(disjoint communities);否则称为重叠社区(overlapping communities). 二.SLPA算法思想与流程 SLP…
这是我最近看到的一篇论文,思路还是很清晰的,就是改进的LPA算法.改进的地方在两个方面: (1)结合K-shell算法计算量了节点重重要度NI(node importance),标签更新顺序则按照NI由大到小的顺序更新 得到ks值后,载计算一下节点邻居ks值和度值d的比值 (2)当出现次数最多的标签不止一个时,再计算一下标签重要度LI(label importance) 其实就是找到节点相同标签的那些令居计算一个合值,看着也不难啊 (3)最后这个算法使用的是异步传播 下面是我实现的代码 func…
最近在研究基于标签传播的社区分类,LabelRank算法基于标签传播和马尔科夫随机游走思路上改装的算法,引用率较高,打算将代码实现,便于加深理解. 这个算法和Label Propagation 算法不同的是计算复杂度较高,对每个标签都确定了概率,但是准确性比Label Propagation算法好. 一.概念 相关概念不再累述,详情见前两篇文章 二.算法思路 首先建立一个标签集合,C={1,2,……n},n是节点的数量.标签概率向量Pi(1*n),Pi(c)=节点i对标签c的概率估计,迭代过程中…
反向传播算法(Back Propagation): 引言: 在逻辑回归中,我们使用梯度下降法求参数方程的最优解. 这种方法在神经网络中并不能直接使用, 因为神经网络有多层参数(最少两层),(?为何不能) 这就要求对梯度下降法做少许改进. 实现过程:  一.正向传播 首先,同逻辑回归,我们求出神经网络输出与实际值的“误差”——COST: 这里先使用欧式距离而不是索夫曼函数作为输出的cost: 展开之后: (注意右边的权重衰减项,既规则化) 二.反向传播 对于第  层(输出层)的每个输出单元 ,我们…
import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn import datasets from sklearn.semi_supervised import LabelPropagation def load_data(): ''' 加载数据集 ''' digits = datasets.load_digits() ###### 混洗样本 ######## rng =…
转载:火烫火烫的 个人觉得BP反向传播是深度学习的一个基础,所以很有必要把反向传播算法好好学一下 得益于一步一步弄懂反向传播的例子这篇文章,给出一个例子来说明反向传播 不过是英文的,如果你感觉不好阅读的话,优秀的国人已经把它翻译出来了. 一步一步弄懂反向传播的例子(中文翻译) 然后我使用了那个博客的图片.这次的目的主要是对那个博客的一个补充.但是首先我觉得先用面向过程的思想来实现一遍感觉会好一点. 随便把文中省略的公式给大家给写出来.大家可以先看那篇博文 import numpy as np #…
BP算法从原理到实践 反向传播算法Backpropagation的python实现 觉得有用的话,欢迎一起讨论相互学习~Follow Me 博主接触深度学习已经一段时间,近期在与别人进行讨论时,发现自己对于反向传播算法理解的并不是十分的透彻,现在想通过这篇博文缕清一下思路.自身才疏学浅欢迎各位批评指正. 参考文献 李宏毅深度学习视频 The original location of the code 关于反向传播算法的用途在此不再赘述,这篇博文主要是理解形象化理解反向传播算法与python进行实…
往期回顾 在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型.目标函数.优化算法这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了.在这篇文章中,我们将把这些单独的单元按照一定的规则相互连接在一起形成神经网络,从而奇迹般的获得了强大的学习能力.我们还将介绍这种网络的训练算法:反向传播算法.最后,我们依然用代码实现一个神经网络.如果您能坚持到本文的结尾,将会看到我们用自己实现的神经网络去识别手写数字.现在请做好准备,您即将双手触及到深度学习的大门. 神经元 神经元和感知器本…
Dynamic Label Propagation for Semi-supervised Multi-class Multi-label Classification ICCV 2013 在基于Graph的半监督学习方法中,分类的精度高度依赖于可用的有标签数据 和 相似性度量的精度.此处,本文提出一种半监督的 multi-class and multi-label 分类机制,Dynamic Label Propagation(DLP),是在一个动态的过程中传递,执行 transductive…
假设我们有一个固定样本集,它包含 个样例.我们可以用批量梯度下降法来求解神经网络.具体来讲,对于单个样例(x,y),其代价函数为:这是一个(二分之一的)方差代价函数.给定一个包含 个样例的数据集,我们可以定义整体代价函数为: 以上公式中的第一项 是一个均方差项.第二项是一个规则化项(也叫权重衰减项),其目的是减小权重的幅度,防止过度拟合. [注:通常权重衰减的计算并不使用偏置项 ,比如我们在 的定义中就没有使用.一般来说,将偏置项包含在权重衰减项中只会对最终的神经网络产生很小的影响.在贝叶斯规则…
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离近期的邻居进行分类推断(投票法)或者回归.假设K=1.那么新数据被简单分配给其近邻的类.KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义.对于监督学习.数据都有明白的label(分类针对离散分布,回归针对连续分布),依据机器学习产…
LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛[赛道一]设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由于比赛期间事情多,没有好好在test集做测试. 个人认为该算法根正苗红,理论上可以获得更好的效果,因此做个开源,抛砖引玉,希望有人能提出更为有效的改进.本次开源的代码可读性较强,也有较高的扩展性,本人…
神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 Tricks!这是一个让人听了充满神秘和好奇的词.对于我们这些所谓的尝试应用机器学习技术解决某些问题的人,更是如此.曾记得,我们绞尽脑汁,搓手顿足,大喊“为什么我跑的模型不work?”,“为什么我实现的效果那么差?”,“为什么我复现的结果没有他论文里面说的那么好?”.有人会和你说“你不懂调参!里面有…
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向传播算法要解决的问题 在了解DNN的反向传播算法前,我们先要知道DNN反向传播算法要解决的问题,也就是说,什么时候我们需要这个反向传播算法? 回到我们监督学习的一般问题,假设我们有m个训练样本:$\{(x_1,y_1), (x_2,y_2), ..., (x_m,y_m)\}$,其中$x$为输入向量…
TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlow Playground的左侧提供了不同的数据集来测试神经网络.默认的数据为左上角被框出来的那个.被选中的数据也会显示在最右边的 “OUTPUT”栏下.在这个数据中,可以看到一个二维平面上有红色或者蓝色的点,每一个小点代表了一个样例,而点的颜色代表了样例的标签.因为点的颜色只有两种,所以这是 一个二…
由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 结构化机器学习项目 卷积神经网络 序列模型 第 1 部分讲的是神经网络的基础,从逻辑回归到浅层神经网络再到深层神经网络. 一直感觉反向传播(Back Propagation,BP)是这部分的重点,但是当时看的比较匆忙,有些公式的推导理解的不深刻,现在重新回顾一下,一是帮助自己梳理思路加深理解,二是记…
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測,如前面讲过的KNN.决策树.朴素贝叶斯.adaboost.SVM.Logistic回归都是分类算法.回归算法用于连续型分布预測.针对的是数值型的样本,使用回归.能够在给定输入的时候预測出一个数值.这是对分类方法的提升,由于这样能够预測连续型数据而不不过离散的类别标签. 回归的目的就是建立一个回归方程…
Backpropagation algorithm(反向传播算法) Θij(l) is a real number. Forward propagation 上图是给出一个training example(x,y),是怎么进行forward propagation的. Backpropagation algorithm(一个trainning example) 因为我们是先求的δ(4),再求δ(3),再一层层往input layer那边推,所以叫做Backpropagation algorith…
为了搞明白这个没少在网上搜,但是结果不尽人意,最后找到了一篇很好很详细的证明过程,摘抄整理为 latex 如下. (原文:https://blog.csdn.net/weixin_41718085/article/details/79381863) 更新:为了让看博客的带哥们能直观的看,我编译截图了,放在这里,latex 源码在下面 这个只是为了应付作业总结的,所以没有认真检查过,如果内容.正确性(尤其是这个)和格式上有什么问题请务必在下面评论区中指出. \documentclass{artic…
反向传播算法详细推导 反向传播(英语:Backpropagation,缩写为BP)是"误差反向传播"的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法.该方法对网络中所有权重计算损失函数的梯度.这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数. 在神经网络上执行梯度下降法的主要算法.该算法会先按前向传播方式计算(并缓存)每个节点的输出值,然后再按反向传播遍历图的方式计算损失函数值相对于每个参数的偏导数. 我们将以全连接层,激活函数采用 Sigm…
反向传播算法实战 本文仅仅是反向传播算法的实现,不涉及公式推导,如果对反向传播算法公式推导不熟悉,强烈建议查看另一篇文章神经网络之反向传播算法(BP)公式推导(超详细) 我们将实现一个 4 层的全连接网络,来完成二分类任务.网络输入节点数为 2,隐藏 层的节点数设计为:25.50和25,输出层两个节点,分别表示属于类别 1 的概率和类别 2 的概率,如下图所示.这里并没有采用 Softmax 函数将网络输出概率值之和进行约束, 而是直接利用均方误差函数计算与 One-hot 编码的真实标签之间的…
反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信号从输入层通过隐藏层传播到输出层.在输出层,计算误差和损失函数. 反向传播:在反向传播中,首先计算输出层神经元损失函数的梯度,然后计算隐藏层神经元损失函数的梯度.接下来用梯度更新权重. 这两个过程重复迭代直到收敛. 前期准备 首先给网络提供 M 个训练对(X,Y),X 为输入,Y 为期望的输出.输入…
反向传播(Back Propagation) 通常在设计好一个神经网络后,参数的数量可能会达到百万级别.而我们利用梯度下降去跟新参数的过程如(1).但是在计算百万级别的参数时,需要一种有效计算梯度的方法,这种方法就是反向传播(简称BP), 因此BP并不是一种新的算法,使用BP就是能够使计算梯度时更加有效率. 其中θ为神经网络的参数,为梯度. 链式法则 设有两个函数为y=g(x),z=h(y),那么要计算z对x导数,则计算过程如(2) 设有三个函数为x=g(s),y=h(s),z=k(x,y),那…
TensorFlow反向传播算法实现 反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信号从输入层通过隐藏层传播到输出层.在输出层,计算误差和损失函数. 反向传播:在反向传播中,首先计算输出层神经元损失函数的梯度,然后计算隐藏层神经元损失函数的梯度.接下来用梯度更新权重. 这两个过程重复迭代直到收敛. 前期准备 首先给网络提供 M 个训练对(X,Y)…