【整理】强化学习与MDP】的更多相关文章

[入门,来自wiki] 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为.这个方法具有普适性,因此在其他许多领域都有研究,例如博弈论.控制论.运筹学.信息论.模拟优化方法.多主体系统学习.群体智能.统计学以及遗传算法.在运筹学和控制理论研究的语境下,强化学习被称作“近似动态规划”(approximate dynamic program…
本文主要介绍强化学习的一些基本概念:包括MDP.Bellman方程等, 并且讲述了如何从 MDP 过渡到 Reinforcement Learning. 1. 强化学习基本概念 这里还是放上David Silver的课程的图,可以很清楚的看到整个交互过程.这就是人与环境交互的一种模型化表示,在每个时间点,大脑agent会从可以选择的动作集合A中选择一个动作$a_t$执行.环境则根据agent的动作给agent反馈一个reward $r_t$,同时agent进入一个新的状态. 根据上图的流程,任务…
前言 最近又入坑RL了,要搞AutoML就要学会RL,真的是心累.. 正文 MDP里面比较重要的就是状态值函数和动作-状态值函数吧,然后再求最优状态值函数和最优动作状态值函数,状态值函数的公式推导一开始不懂,卡在了一个地方,现在记下来, 很关键的一个在于“和的期望等于期望的和”…
在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策过程(Markov Decision Process,以下简称MDP)来简化强化学习的建模. MDP这一篇对应Sutton书的第三章和UCL强化学习课程的第二讲. 1. 强化学习引入MDP的原因 强化学习的8个要素我们在第一节已经讲了.其中的第七个是环境的状态转化模型,它可以表示为一个概率模型,即在…
原文地址: https://www.cnblogs.com/pinard/p/9426283.html --------------------------------------------------------------------------------------- 在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策过程(Markov…
https://blog.csdn.net/Mbx8X9u/article/details/80780459 课程主页:http://rll.berkeley.edu/deeprlcourse/ 所有视频的链接:https://www.youtube.com/playlist?list=PLkFD6_40KJIznC9CDbVTjAF2oyt8_VAe3 由于文章较长,且有较多外链接,建议下载PDF版进行阅读 方式一 点击阅读原文即可下载 方式二 返回菜单栏,回复“20180622” 知识背景…
1. 前言 前面的强化学习基础知识介绍了强化学习中的一些基本元素和整体概念.今天讲解强化学习里面最最基础的MDP(马尔可夫决策过程). 2. MDP定义 MDP是当前强化学习理论推导的基石,通过这套框架,强化学习的交互流程可以很好地以概率论的形式表示出来,解决强化学习问题的关键定理也可以依此表示出来. MDP(马尔可夫决策过程)包含以下三层含义: "马尔可夫"表示了状态间的依赖性.当前状态的取值只和前一个状态产生依赖,不和更早的状态产生联系.虽然这个条件在有些问题上有些理想,但是由于它…
本系列强化学习内容来源自对David Silver课程的学习 课程链接http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html 之前接触过RL(Reinforcement Learning) 并且在组会学习轮讲里讲过一次Policy Gradient,但是由于基础概念不清,虽然当时懂了 但随后很快就忘..虽然现在写这个系列有些晚(没有好好跟上知识潮流o(╥﹏╥)o),但希望能够系统的重新学一遍RL,达到遇到问题能够自动想RL的解决方法的程…
一.MDP  / NFA    :马尔可夫模型和不确定型有限状态机的不同 状态自动机:https://www.cnblogs.com/AndyEvans/p/10240790.html MDP和NFA唯一相似的地方就是它们都有状态转移,抛掉这一点两者就八竿子打不着了. 二.MP  -> MRP -> MDP 三.计算给定策略下的价值函数 / 贝尔曼期望方程 我们用贝尔曼期望方程求解在某个给定策略π和环境ENV下的价值函数: 具体解法是:(下面是对于V(s)的解法) 从而对于每一个特定的π,都能…
作者:YJLAugus 博客: https://www.cnblogs.com/yjlaugus 项目地址:https://github.com/YJLAugus/Reinforcement-Learning-Notes,如果感觉对您有所帮助,烦请点个Star. MDP背景介绍 Random Variable 随机变量(Random Variable),通常用大写字母来表示一个随机事件.比如看下面的例子: \(X\): 河水是咸的 \(Y\): 井水是甜的 很显然,\(X\), \(Y\)两个随…