如何理解最后面两句话, L^2与l^2同构 L^2里面 有理系数多项式 是可数稠密子集 所以L^2可分 可分Hilbert空间都同构于 l^2 傅里叶级数是一个稠密的子集…
1. 证明满足 (6) 的范数可以由一个内积诱导出来. 这个结论属于 von Neumann. 证明: 以实线性空间为例, 取内积 $$\bex \sex{x,y}=\cfrac{1}{4}[\sen{x+y}^2-\sen{x-y}^2], \eex$$ 则 $\sex{x,y}$ 为内积, 且 $\sex{x,x}^\frac{1}{2}=\sen{x}$. 2. 证明内积连续地依赖于它的因子, 即若 $x_n\to x$, $y_n\to y$ (这意味着 $\sen{x_n-x}\to…
1.说在前面 过完今天就放假回家了(挺高兴),于是提前检查了下个服务集群的状况,一切良好.正在我想着回家的时候突然发现手机上一连串的告警,spark任务执行失败,spark空间不足.我的心突然颤抖了一下,于是赶紧去看服务器的磁盘容量: #df  -h 确实,还剩下6.8G,赶紧排查是什么占用了空间.发现hadoop.spark站的空间比较大,一个50多G(data).一个30多G(spark-events).不对啊,这也没占多少啊,于是登录到hadoop的webui去看资源的使用情况: 发现No…
1. 对测度是 $\sigma$ 有限的情形证明 Radon-Nikodym 定理. 证明: 设 $\mu,\nu$ 均为 $\sigma$ 有限的非负测度, 则存在分割 $$\bex X=\cup_{i=1}^\infty X_i=\cup_{j=1}^\infty Y_j \eex$$ 使得 $$\bex \mu(X_i)<\infty,\quad \nu(Y_j)<\infty. \eex$$ 写出 $$\bex X=\cup_{i,j=1}^\infty (X_i\cap Y_j),…
标题 静态代码块与静态成员变量还要看代码的先后顺序 看程序,说出结果 结果为: x=0 看程序,说出结果 结果如下: 补充 : 静态代码块:static{ } 在JVM加载时即执行,先于主方法执行,用于类的属性初始化 注意:静态代码块不能存在于任何方法体中 构造代码块:{} 放于类中,在构造方法调用时先于构造中其他代码执行 局部代码块:{} 放于某方法中,用于缩短变量生命周期 以释放空间 package com.swift.gouzaodaimakuai; public class Gouzao…
1 ( 10 分 ) 设 $\mathcal{X}$ 是 Banach 空间, $f$ 是 $\mathcal{X}$ 上的线性泛函. 求证: $f\in \mathcal{L}(\mathcal{X})$ 的充分必要条件是 \[ N(f)=\{ x\in \mathcal{X};\ f(x)=0 \} \] 是 $\mathcal{X}$ 的闭线性子空间. 证明: 必要性. 设 $N(f)\ni x_n\to x$, 则 $$\bex f(x)&=&\lim_{n\to\infty}f(…
作者:qang pan 链接:https://www.zhihu.com/question/19967778/answer/28403912 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 什么是赋范线性空间.内积空间,度量空间,希尔伯特空间 ? 现代数学的一个特点就是以集合为研究对象,这样的好处就是可以将很多不同问题的本质抽象出来,变成同一个问题,当然这样的坏处就是描述起来比较抽象,很多人就难以理解了.既然是研究集合,每个人感兴趣的角度不同,研究的方向也就不同…
希尔伯特空间是老希在解决无穷维线性方程组时提出的概念, 原来的线性代数理论都是基于有限维欧几里得空间的, 无法适用, 这迫使老希去思考无穷维欧几里得空间, 也就是无穷序列空间的性质. 大家知道, 在一个欧几里得空间R^n上,所有的点可以写成为:X=(x1,x2, x3,....xn).  那么类似的, 在一个无穷维欧几里得空间上点就是:X=(x1, x2, x3,....xn,.....), 一个点的序列. 欧氏空间上有两个重要的性质,一是每个点都有一个范数(绝对值,或者说是一个点到原点的距离)…
[转载请注明出处]http://www.cnblogs.com/mashiqi 2014/4/10 在网上找到一个讲reproducing kernel的tutorial看了一看,下面介绍一下. 首先定义kernel(核): 于是我们可以从一个空间定义出一个kernel.接着,我们使用一个kernel来定义一个从到的映射,并称这个映射为reproducing kernel feature map(再生核特征映射): . 这个映射的意思是:特定的kernel和上的一个特定的元素构成了一个映射规则,…
设 $\scrX$, $\scrY$ 是 Hilbert 空间, $T\in \scrL(\scrX,\scrY)$, $y_0\in\scrY$, $\alpha>0$. 则 Tikhonov 泛函 $$\bee\label{T} J_\alpha(x)=\sen{Tx-y_0}^2+\alpha\sen{x}^2\quad \sex{x\in \scrX} \eee$$存在唯一最小解 $x^\alpha\in \scrX$, 且 $x^\alpha$ 适合 Euler-Lagrange 方程…