1,为什么需要hadoop 数据分析者面临的问题 数据日趋庞大,读写都出现性能瓶颈: 用户的应用和分析结果,对实时性和响应时间要求越来越高: 使用的模型越来越复杂,计算量指数级上升. 期待的解决方案 解决性能瓶颈,在可见的未来不会出现新瓶颈之前的技术可以平稳过渡,如SQL: 转移成本,如软硬件成本,开发成本,技能培养成本,维护成本 2,关系型数据库和MapReduce的比较: 传统关系型数据库 MapReduce 数据大小 GB PB 访问 交互式和批处理 批处理 更新 多次读写 一次写入多次读…
摸索了将近一个月的hadoop , 在centos上配了一个伪分布式的环境,又折腾了一把hadoop eclipse plugin,最后终于实现了在windows上编写MapReduce程序,在centos上可以执行. 关于环境的配置,网上很多,不再废话. 仅以此系列的博客记录学习过程中的点点滴滴. ##############################传说中的分割线##################### 学习了WordCount程序,也照着网上的某些文章,实现了一些简单的MapRed…
MapReduce工作机制--Word Count实例(一) MapReduce的思想是分布式计算,也就是分而治之,并行计算提高速度. 编程思想 首先,要将数据抽象为键值对的形式,map函数输入键值对,处理后,产生新的键值对作为中间结果输出.接着,MapReduce框架自动将中间结果按键做聚合处理,发给reduce函数处理.最后,reduce函数以键和对应的值的集合作为输入,处理后,产生另一系列键值对作为最终输出.后面会结合实例介绍整个过程. 运行环境 先不考虑采用YARN的情况,那个时候Map…
目录 5 MapReduce工作机制(重点) 5.1 MapTask工作机制 5.2 ReduceTask工作机制 5.3 ReduceTask并行度决定机制 手动设置ReduceTask数量 测试ReduceTask多少合适 5 MapReduce工作机制(重点) 5.1 MapTask工作机制 Read阶段 主要是Job的提交流程 1.切片划分 2.提交给Yarn Job.split 切片信息 wc.jar 集群模式会提交,本地模式不会提交 Job.xml 配置信息 3.Yarn开启Node…
一.NN与2NN工作机制 NameNode(NN) 1.当HDFS启动时,会加载日志(edits)和镜像文件(fsImage)到内存中. 2-4.当元数据的增删改查请求进来时,NameNode会先将操作记录到日志中,之后再执行内存数据的增删改查 SecondNameNode(2NN) 1.SecondNameNode请求NameNode,请求是否需要checkPoint,checkPoint的触发条件: 定时时间到 日志文件满了 2-6.请求checkPoint,会将最近写的edits和fsIm…
首先需要知道的就是在老版本的hadoop中是没有yarn的,mapreduce既负责资源分配又负责业务逻辑处理.为了解耦,把资源分配这块抽了出来,形成了yarn,这样不仅mapreudce可以用yarn,其他运算体系也可以用yarn,比如说storm.spark. 把我们编写好的符合mapreduce编程规范的代码打成jar包,上传到ResourceManager节点.执行 hadoop jar xxx.jar  mainClass(这里用mainClass代表main类) 后,会有一个RunJ…
1.MapTask工作机制 整个map阶段流程大体如上图所示.简单概述:input File通过getSplits被逻辑切分为多个split文件,通通过RecordReader(默认使用lineRecordReader)按行读取内容给map(用户自己实现的map方法),进行处理,数据被map处理结束之后交给OutputCollector收集器,对其结果key进行分区(默认使用hash分区),然后写入buffer,每个map task 都有一个内存缓冲区,存储着map的输出结果,当缓冲区快满的时候…
P205 MapReduce的两种运行机制 第一种:经典的MR运行机制 - MR 1 可以通过一个简单的方法调用来运行MR作业:Job对象上的submit().也可以调用waitForCompletion(),用于提交以前没有提交的作业,并等待其完成. Hadoop执行MR的方法依赖于两个配置设置 mapred.job.tracker - 决定执行MR程序的方式 如果设置为local默认值,表示使用本地的作业运行器,在单个JVM上运行整个作业,用于小数据集测试 如果设置为主机端口对,那么被解释为…
一.MapReduce完整运行流程 解析: 1 在客户端启动一个作业. 2 向JobTracker请求一个Job ID. 3 将运行作业所需要的资源文件复制到HDFS上,包括MapReduce程序打包的jar文件.配置文件和客户端计算所得的计算划分信息.这些文件都存放在JobTracker专门为该作业创建的文件夹中.文件夹名为该作业的Job ID.jar文件默认会有10个副本(mapred.submit.replication属性控制):输入划分信息告诉了JobTracker应该为这个作业启动多…
MapReduce是什么? MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,MapReduce程序本质上是并行运行的,因此可以解决海量数据的计算问题. MapReduce任务过程被分为两个处理阶段:map阶段和reduce阶段.每个阶段都以键值对作为输入和输出.用户只需要实现map()和reduce()两个函数即可实现分布式计算. MapReduce的组成部分 1.JobClient(客户端) 用户编写的MapReduce程序通过客户端提交到JobTracker 2…