多源最短路径Floyd算法】的更多相关文章

1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex> Q; Vertex V; PtrToAdjVNode W; Q.push(S); while (!Q.empty()) { V = Q.front(); Q.pop(); for (W = Graph->G[V].FirstEdge; W; W = W->Next) ) { dist[W-&…
多源最短路径是求图中任意两点间的最短路,采用动态规划算法,也称为Floyd算法.将顶点编号为0,1,2...n-1首先定义dis[i][j][k]为顶点 i 到 j 的最短路径,且这条路径只经过最大编号不超过k的顶点.于是我们最终要求的是dis[i][j][n-1].状态转移方程如下: dis[i][j][k]=min{dis[i][j][k-1],dis[i][k][k-1]+dis[k][j][k-1]}; 状态转移方程的解释:在计算dis[i][j][k]的时候,我们考虑 i 到 j 是否…
正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3). Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,…
Floyd-Warshall算法的原理是动态规划. 设Di,j,k为从i到j的只以(1..k)集合中的节点为中间节点的最短路径的长度. 若最短路径经过点k,则Di,j,k = Di,k,k − 1 + Dk,j,k − 1: 若最短路径不经过点k,则Di,j,k = Di,j,k − 1. 因此,Di,j,k = min(Di,k,k − 1 + Dk,j,k − 1,Di,j,k − 1). ; k <= n; k++) //经过编号为前k个的顶点 { ; i <= n; i++) { ;…
7-8 哈利·波特的考试(25 分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变化的魔咒就是简单地将原来的魔咒倒过来念,例如ahah可以将老鼠变成猫.另外,如果想把猫变成鱼,可以通过念一个直接魔咒lalala,也可以将猫变老鼠.老鼠变鱼的魔咒连起来念:hahahehe. 现在哈利·波特的手里有一本教材,里面列出了所有的变形魔咒和能变的动物.老师允许他自己带一只动物去考场,要考察…
文字描述 求每一对顶点间的最短路径,可以每次以一个顶点为源点,重复执行迪杰斯特拉算法n次.这样,便可求得每一对顶点之间的最短路径.总的执行时间为n^3.但是还有另外一种求每一对顶点间最短路径的方法,就是弗洛伊德(Floyd)算法,它的时间复杂度也为n^3,但是形式上更简单,其基本思想如下: 如果无法理解上面的文字的话,建议看下代码实现部分,可以更容易理解. 示意图 算法分析 时间复杂度为n^3 代码实现 // // Created by lady on 19-1-6. // #include <…
Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2). 2.算法描述 1)算法思想原理: Floyd算法是一个经典的动态规划算法.用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径.从动态规划的角度看问题,我们需要为这个目标重新做…
简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 简单的说就是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2). 解决最短…
Floyd算法是图论中经典的多源最短路径算法,即求任意两点之间的最短路径. 它可采用动态规划思想,因为它满足最优子结构性质,即最短路径序列的子序列也是最短路径. 举例说明最优子结构性质,上图中1号到5号的最短路径序列<1,2,4,5>,其子序列<1,2,4>也是最短路径. 在动态规划算法中,处于首要位置.且也是核心理念之一的就是状态的定义. 动态转移的基本思想可以认为是建立起某一状态和之前状态的一种转移表示. d[k][i][j]定义为“只能使用第1号到第k号点作为中间媒介时,点i…
通过dij,ford,spfa等算法可以快速的得到单源点的最短路径,如果想要得到图中任意两点之间的最短路径,当然可以选择做n遍的dij或是ford,但还有一个思维量较小的选择,就是floyd算法. 多源最短路径算法 Floyd算法 思维 先直观做个思考,一张图,任意两个点,已知两点间的路径权值,如果在图中能够找到一个点插入到这两点的路径之中,使得构成的路径权值小于之前的路径权值.就可以认为这条路比之前的路更短,这个点是属于两点间最短路径的.由此可以得到一个递推公式: \[ e[u][v]=min…
声明:图片及内容基于https://www.bilibili.com/video/BV1oa4y1e7Qt?from=articleDetail 多源最短路径的引入 Floyd算法 原理 加入a: 加入b: 加入c: 数据结构 核心代码 Floyd() void MGraph::Floyd(){ for(int i=0;i<vertexNum;i++){ for(int j=0;j<vertexNum;j++){ dist[i][j]=arc[i][j]; //dist数组初始化 if(dis…
#include <stdio.h>#include <stdlib.h>/* Floyd算法 */#define VNUM 5#define MV 65536int P[VNUM][VNUM];int A[VNUM][VNUM];int Matrix[VNUM][VNUM] ={    {0, 10, MV, 30, 100},    {MV, 0, 50, MV, MV},    {MV, MV, 0, MV, 10},    {MV, MV, 20, 0, 60},    {…
每次都以为自己理解了Dijkstra这个算法,但是过没多久又忘记了,这应该是第4.5次重温这个算法了. 这次是看的胡鹏的<地理信息系统>,看完之后突然意识到用数学公式表示算法流程是如此的好理解,堪称完美. 内容摘抄如下: 网络中的最短路径是一条简单路径,即是一条不与自身相交的路径,最短路径搜索的依据:若从S点到T点有一条最短路径,则该路径上的任何点到S的距离都是最短的. Dijkstra算法搜索步骤: 1.对起始点作标记S,且对所有顶点令D(X)=∞,Y=S: 2.对所有未做标记的点按以下公式…
dijkstra算法与prim算法的区别   1.先说说prim算法的思想: 众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的点集合A,另一个集合为未加入生成树的点B,它的具体实现过程是: 第1步:所有的点都在集合B中,A集合为空. 第2步:任意以一个点为开始,把这个初始点加入集合A中,从集合B中减去这个点(代码实现很简单,也就是设置一个标示数组,为false表示这个点在B中,为true表示这个点在A中),寻找与它相邻的点…
本文记录一下dijkstra算法的实现,图用邻接矩阵表示,假设图为无向图.而且连通,有向图,不连通图的做法相似. 算法简述: 首先确定"单源"的源.假设是第0个顶点. 维护三个数组dist[], color[], path[].设其下标分别为0-i-n-1: dist[] 表示源点到顶点i的最短距离,在初始化时,假设源点到顶点i有路径,则初始化为路径的权重.否则初始化为INT_MAX. color[] 数组事实上表示两个集合,即color[i]值为1的集合表示已经确定最短路径的点的集合…
        暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程.         上图中有4个城市8条公路,公路上的数字表示这条公路的长短.请注意这些公路是单向的.我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径.这个问题这也被称为“多源最短路径”问题.         现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储.比如…
Floyd算法 所有顶点对之间的最短路径问题是:对于给定的有向网络G=(V,E),要对G中任意两个顶点v,w(v不等于w),找出v到w的最短路径.当然我们可以n次执行DIJKSTRA算法,用FLOYD则更为直接,两种方法的时间复杂度都是一样的. 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度…
Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2). 2.算法描述 1)算法思想原理: Floyd算法是一个经典的动态规划算法.用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径.从动态规划的角度看问题,我们需要为这个目标重新做…
最短路径问题 昨天自己试了试写一下dijkstra的算法博客 dijkstra链接在这← 今天来更floyd算法,感觉非常简单果然暴力才是解决一切的王道 一.总体思想 floyd算法就是每一次从邻接矩阵选取一个顶点k,然后再去矩阵中遍历两个顶点i,j,看看是i→j的路径短,还是i→k→j的路径短,就是完全的暴力,算法和代码非常简单 二.代码实现 void Floyd(Graph G) { int arr[G.vexnum][G.vexnum]; ; i < G.vexnum; i++) ; j…
如何求一张图中任意两顶点之间的最短路径长度,这里写一种最简单的算法——Floyd算法: #include<stdio.h> #define inf 9999 int main() { ][]; //用邻接矩阵表示图 printf("请输入顶点和边的数目:"); int n,m; scanf("%d%d",&n,&m); ;i<n;i++) { ;j<n;j++) { if(i==j) { e[i][j]=; } else {…
摘自啊哈算法-知识分享,代码自己有改动,使得输出更直观. 小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间没有,如下图.为了节省经费以及方便计划旅程,小哼希望出发之前知道任意两个城市之间的最短路程. 上图中有四个城市8条公路,公路上的数字表示该公路的长短.现在需要求任意两个城市之间的最短路径,也就是求任意两点之间的最短路径."多源路径最短"问题. 现在需要一个数据结构来存储图的信息,用一个4*4的矩阵来存储.比如城市1到城市2的路程为2,则设e[1][2]的值为2.2号城市无法…
1.算法标签 贪心 2.算法描述 具体的算法描述网上有好多,我觉得莫过于直接wiki,只说明一些我之前比较迷惑的. 对于Dijkstra算法,最重要的是维护以下几个数据结构: 顶点集合S : 表示已经找出从源点出发最短路径的顶点集合 顶点集合Q: S在所有顶点集合中的补集,即V-S 距离数组dist : 在程序执行过程中,如果序号为n的顶点已经在S中,那么dist[n]表示从源点start到顶点n的最短距离,否则dist[n]的值将在程序执行过程中不断收敛. 路径数组previous: 当程序执…
传送门: Dijkstra Bellman-Ford SPFA Floyd 1.Dijkstra算法的局限性 像上图,如果用dijkstra算法的话就会出错,因为如果从1开始,第一步dist[2] = 7, dist[3] = 5;在其中找出最小的边是dist[3] = 5;然后更新dist[2] = 0,最终得到dist[2] = 0,dist[3] = 5,而实际上dist[3] = 2:所以如果图中含有负权值,dijkstra失效 2.Bellman-Ford算法思想 适用前提:没有负环(…
SPFA同样是一种基于贪心的算法,看过之前一篇blog的读者应该可以发现,SPFA和堆优化版的Dijkstra如此的相似,没错,但SPFA有一优点是Dijkstra没有的,就是它可以处理负边的情况. 和Dijkstra的出发点不同,Dijkstra是从点入手的,而SPFA则是从边开始的,要不断的改变边,把点入堆,有的时候SPFA是比堆优化版的Dijkstra要慢的. 下面是程序,还是借助它来讲解,很容易理解,关键之处是一定要自己去试着编程. #include<bits/stdc++.h> us…
#include<iostream> #define INF 105 using namespace std; int main() { ][],mark,x,y,g; while(cin>>n>>m) { mark=; g=; ;i<n;i++) { ;j<n;j++) { if(i==j) d[i][j]=; else d[i][j]=INF; } } ;i<m;i++) { cin>>x>>y; d[x][y]=; d[y…
前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra算法来求最短路径,并且算法的思想很简单-贪心算法:每次确定最短路径的一个点然后维护(更新)这个点周围点的距离加入预选队列,等待下一次的抛出确定.虽然思想很简单,实现起来是非常复杂的,我们需要邻接矩阵(表)储存长度,需要优先队列(或者每次都比较)维护一个预选点的集合.还要用一个boolean数组标记是…
百度百科定义:传送门 一.floyd算法 说实话这个算法是用来求多源最短路径的算法. 算法原理: 1,从任意一条单边路径开始.所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大. 2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短.如果是更新它. 把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i][j]=d,d表示该路的长度:否则G[i][j]=无穷大.定义一个矩阵D用来记录所插入点的信息,D[i][j]表示从Vi到…
Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年构思并于 1959 年发表.其解决的问题是:给定图 G 和源顶点 v,找到从 v 至图中所有顶点的最短路径. Dijkstra 算法采用贪心算法(Greedy Algorithm)范式进行设计.在最短路径问题中,对于带权有向图 G = (V, E),Dijkstra 算法的初始实现版本未使用最小优先…
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Lester Ford 分别发表于 1958 年和 1956 年,而实际上 Edward F. Moore 也在 1957 年发布了相同的算法,因此,此算法也常被称为 Bellman-Ford-Moore 算法. Bellman-Ford 算法和 Dijkstra 算法同为解决单源最短路径的算法.对于带权有向…
做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么(Vi...Vk)也必然是从i到k的最短路径.Dijkstra是以最短路径长度递增,逐次生成最短路径的算法.比如:对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+cost[i][j]}.如…