公式法:两个数相乘等于最小公倍数乘以最大公约数 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> int gcd2(int a, int b) { int mod = a%b; ) { a = b; b = mod; mod = a%b; } return b; } int main() { int a, b; int cd; scanf("%d", &a); s…
给出两个数a.b,求最大公约数(GCD)与最小公倍数(LCM) 一.最大公约数(GCD)    最大公约数的递归:  * 1.若a可以整除b,则最大公约数是b  * 2.如果1不成立,最大公约数便是b与a%b的最大公约数  * 示例:求(140,21)  * 140%21 = 14  * 21%14 = 7  * 14%7 = 0  * 返回7 代码如下,非常简单,一行就够了: int GCD(int a,int b) { return a%b?GCD(b,a%b):b; }  二.最小公倍数(…
[问题2014A02] 解答三(降阶公式法) 将矩阵 \(A\) 写成如下形式: \[A=\begin{pmatrix} -2a_1 & 0 & \cdots & 0 & 0 \\ 0 & -2a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -2a_{n-1} &…
最大公约数 #include<iostream> using namespace std; int a,b; int gcd(int x,int y){ return x==0?y:gcd(y%x,x); } int main() { cin>>a>>b; cout<<gcd(a,b); return 0; } 最小公倍数 最小公倍数是两数的乘积除最大公约数 #include<iostream> using namespace std; int…
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数.其计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) 证明:a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a = kb +r 因此d也是(a,b)的公约数 因此(a,b…
最大公约数(辗转相除法) 循环: int gcd(int a,int b) { int r; ) { r=b%a; b=a; a=r; } return b; } 递归: int gcd(int a,int b) { ?b:gcd(b%a,a); } 最小公倍数 int lcm(int a,int b) { return a*b/gcd(a,b); }…
求最大公约数和最小公倍数的经典算法--辗转相除法描述如下: 若要求a,b两数的最大公约数和最小公倍数,令a为a.b中较大数,b为较小数,算法进一步流程: while(b不为0) { temp=a%b: a=b: b=temp } 最后a即为两数的最大公约数,最大公倍数为: a*b/最大公约数 c语言代码: 01.int divisor (int a,int b) /*自定义函数求两数的最大公约数*/ 02.{ 03. int temp; /*定义整型变量*/ 04. if(a<b) /*通过比较…
import java.util.Scanner; public class Test { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int m = sc.nextInt(); int n = sc.nextInt(); if(m<n) { int temp = m; m = n; n = temp; } int t = gy(m,n); System.out.println("…
题目: 考虑清楚就简单了,我们把每个数的因子计数. 两个数的公约数就是计数超过2的数,然后找到最大的那个就好了. 计算每个数的素因子,记得sqrt(),不然会超时. 打表计数法时间复杂度O(n*sqrt(n)). 代码: #include <iostream> #include <algorithm> #include <map> #include <vector> #include <set> #include <math.h> #…
最大公约数:gcd 最大公倍数:lcm gcd和lcm的性质:(我觉得主要是第三点性质) 若gcd (…
// 对亮度信号进行FDCT变换// @param   data    亮度信号的存储数组void CompressEncode::standardFDCT(BYTE data[MATRIXSIZE][MATRIXSIZE]){    BYTE output[MATRIXSIZE][MATRIXSIZE];    double alpha, beta;    short u = 0, v = 0;    short x = 0, y = 0;    for (v = 0; v < MATRIXS…
约瑟夫环问题的原来描述为,设有编号为1,2,--,n的n(n>0)个人围成一个圈,从第1个人开始报数,报到m时停止报数,报m的人出圈,再从他的下一个人起重新报数,报到m时停止报数,报m的出圈,--,如此下去,直到所有人全部出圈为止.当任意给定n和m后,设计算法求n个人出圈的次序.  稍微简化一下. 问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数.求胜利者的编号. 利用数学推导,如果能得出一个通式,就可以利用递归.循环等手段解决.下面给出推导的…
1.如何反向迭代一个序列 #如果是一个list,最快的方法使用reversetempList = [1,2,3,4]tempList.reverse()for x in tempList:    print x #如果不是list,需要手动重排templist = (1,2,3,4)for i in range(len(templist)-1,-1,-1):    print templist[i] 2.如何查询和替换一个文本中的字符串 #最简单的方法使用replace()tempstr = "…
1.如何反向迭代一个序列 #如果是一个list,最快的方法使用reversetempList = [1,2,3,4]tempList.reverse()for x in tempList:    print x #如果不是list,需要手动重排templist = (1,2,3,4)for i in range(len(templist)-1,-1,-1):    print templist[i] 2.如何查询和替换一个文本中的字符串 #最简单的方法使用replace()tempstr = "…
辗转相除法,又称欧几里得算法.两个正整数a和b(a>b),它们的最大公约数等于余数c和较小的数b之间的最大公约数.最小公倍数=两数之积/最大公约数 #include <stdio.h> int get1(int a, int b) { if (a < b) { int c = a; a = b; b = c; } while (a%b != 0) { b = a%b; a = b; } return b; } int get2(int a,int b) { return a*b /…
辗转相除法(又称欧几里得算法)是求最大公因数的算法 要求a,b的最大公约数(a>b),我们可以递归地求b,a%b的最大公约数,直到其中一个数变成0,这时另一个数就是a,b的最大公约数. C++实现: int gcd(int a,int b){ retuen b?gcd(b,a%b):a; } 或: while(b!=0)  {  temp=a%b;   a=b;   b=temp; } 证明:(引自百度百科) 设两数为a.b(b<a),用gcd(a,b)表示a,b的最大公约数,r=a (mod…
两个数的最大公约数:不能大于两个数中的最小值,算法口诀:小的给大的,余数给小的,整除返回小的,即最大公约数,(res=max%min)==0?  max=min,min=res return min; 两个数的最小公倍数:等于两数之和除以两个数的最大公约数 a*b/(LCM(a,b)); #include <iostream> using namespace std; /*求最大公约数,辗转相除法来求最小公倍数*/ int getLCM(int a, int b) { int max = (a…
最大公约数(Greatest Common Divisor(GCD)) 基本概念 最大公因数,也称最大公约数.最大公因子,指两个或多个整数共有约数中最大的一个.a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号.求最大公约数有多种方法,常见的有质因数分解法.短除法.辗转相除法.更相减损法.与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]. 算法 辗转相除法 辗转相除法:辗转相除法是求两个自然数的最大公约数的…
1.最大公约数  链接 如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数.几个自然数公有的约数,叫做这几个自然数的公约数.公约数中最大的一个公约数,称为这几个自然数的最大公约数. 1.1整除 若整数b除以非零整数a,商为整数,且余数 为零, 我们就说b能被a整除(或说a能整除b),b为被除数,a为除数,即a|b(“|”是整除符号),读作“a整除b”或“b能被a整除”.a叫做b的约数(或因数),b叫做a的倍数. 1.2辗转相除法 又叫[欧几里德算法] 用较大的数除以较小的数,上面…
除了分解质因数,还有另一种适用于求几个较小数的最大公约数.最小公倍数的方法 下面是数学证明及算法实现 令[a1,a2,..,an] 表示a1,a2,..,an的最小公倍数,(a1,a2,..,an)表示a1,a2,..,an的最大公约数,其中a1,a2,..,an为非负整数.对于两个数a,b,有[a,b]=ab/(a,b),因此两个数最小公倍数可以用其最大公约数计算.但对于多个数,并没有[a1,a2,..,an]=M/(a1,a2,..,an)成立,M为a1,a2,..,an的乘积.例如:[2,…
//求最大公约数是用辗转相除法,最小公倍数是根据公式 m,n 的 最大公约数* m,n最小公倍数 = m*n 来计算 #include<stdio.h> //将两个整数升序排列 void ascNum(int *p1,int *p2) { int temp; if(*p1 > *p2) { temp = *p2; *p2 = *p1; *p1 = temp; } } //求两个整数的最大公约数 辗转相除法 int getAppr(int a, int b) { int c; ascNum…
题目 给你两个正整数a和b, 输出它们的最大公约数 辗转相除法 辗转相除法的步骤 def gcd(b,a): b,a=a,b%a if a==0: return b else: return gcd(b,a) 即就是取假设b与a不能整除,就取a和b除以a的余数再考察是个递归的思路. 理解 能够从两个角度去理解辗转相除法 1.举例法 一张长方形纸,长2703厘米.宽1113厘米.要把它截成若干个相同大小的正方形,纸张不能有剩余且正方形的边长要尽可能大.问:这样的正方形的边长是多少厘米? 解答: 可…
Description 输入两个正整数m和n,输出m.n的最大公约数和最大公倍数.先计算最大公约数,m和n得乘积除以最大公约数,就得到了最小公倍数.其中最大公约数可以用穷举法求得,也可以用辗转相除法求得. Input 两个正整数m和n,空格隔开 Output m.n的最大公约数和最小公倍数. 提示:一般地说,求最小公倍数用两个数的积除以最大公约数即可,而求最大公约数有多种算法: 1.  穷举法1,从1开始直到较小的数,每个数进行判断,如果是公约数就保留此数到变量max中,最后留下的就是最大公约数…
最大公约数GCD(Greatest Common Divisor) 最常见的求两个数的最大公约数的算法是辗转相除法,也叫欧几里得算法 该算法的c++语言实现如下: #include<iostream> using namespace std; int gcd(int a,int b){ return b==0?a:gcd(b,a%b); } int main(){ int a=45,b=10; cout<<gcd(10,45); } Output 5 最小公倍数LCM(Lowest…
最大公约数直接用辗转相除法,最小公倍数就是两个数的乘积除以最大公约数 #include<iostream> using namespace std; int gys(int x,int y) { return y? gys(y,x%y):x; } int main() { int x,y; cin>>x>>y; cout<<"最大公约数是:"; cout<<gys(x,y)<<endl; cout<<&…
C# 求俩个正整数的最小公倍数和最大公约数 1.公倍数.最小公倍数 两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数 翻开小学5年级下册PPT 1.1介绍 常用办法 1.列举法 例如:求6和8的最小公倍数. 6的倍数有:6,12,18,24,30,36,42,48,…… 8的倍数有:8,16,24,32,40,48,…… 6和8的公倍数:24,48,……其中24是6和8的最小公倍数. 这种方法是先分别写出各自的倍数,再找出它们的公倍数,然后在公倍…
PTA 7-26 最大公约数和最小公倍数 #include<stdio.h> int main(){ int num1,num2,temp1,temp2,r; scanf("%d %d",&num1,&num2); temp1 = num1; temp2 = num2; ){ r = temp1 % temp2; temp1 = temp2; temp2 = r; } printf("%d %d\n",temp1,num1*num2/te…
"""写两个函数,分别求两个整数的最大公约数和最小公倍数,调用这两个函数,并输出结果.两个整数由键盘输入.""" ''' 设两个整数u和v,用辗转相除法求最大公约数的算法如下: 例如:u=4和v=6 if v>u v>u即:4<6 将变量u与v的值互换(使大者u为被除数) 变成 u=6,v=4 while(u/v的余数r!=0) u/v=6/4=1,余数r为2 { { u=v(使除数变为被除数u) u=v=4 v=r(使余数变为…
最大公约数为辗转相除法求得, 最小公倍数为两数之积与最大公约数的比值 #include<iostream> using namespace std; int gcd(int, int); int mcm(int, int); int main() { int a, b; cout << "enter a and b: " << endl; cin >> a >> b; cout << "gcd : &qu…
P1029 最大公约数和最小公倍数问题 最大公约数用辗转相除法: 最小公倍数:两个数的乘积=他们的最大公约数*最小公倍数,既然两个数的乘积及其最大公约数已知,那么最小公倍数也可以求了. #include<bits/stdc++.h> using namespace std; int x,y,sum; int gcd(int a,int b) { if(!b)return a; return gcd(b,a%b); } int main() { scanf("%d%d",&a…