聚类算法在 D2C 布局中的应用】的更多相关文章

1.摘要 聚类是统计数据分析的一门技术,在许多领域受到广泛的应用,包括机器学习.数据挖掘.图像分析等等.聚类就是把相似的对象分成不同的组别或者更多的子集,从而让每个子集的成员对象都有相似的一些属性. 所谓聚类算法,其实就是将一对没有标签的数据自动划分成几类的方法.在应用场景上,聚类能帮助我们解决很多计算机中的分类问题,常见的如:颜色类别分类.空间坐标中的密度分类.电商中的人群特征分类.除了分类问题外,它也能帮助我们实现"异常检查",什么是异常检查?我们可以理解为找噪点,通俗来说就是在一…
引言:聚类是将数据分成类或者簇的过程,从而使同簇的对象之间具有很高的相似度,而不同的簇的对象相似度则存在差异.聚类技术是一种迭代重定位技术,在我们的生活中也得到了广泛的运用,比如:零件分组.数据评价.数据分析等很多方面:具体的比如对市场分析人员而言,聚类可以帮助市场分析人员从消费者数据库中分出不同的消费群体来,并且可以分析出每一类消费者的消费习惯等,从而帮助市场人员对销售做出更好的决策. 所以,本篇博客主要是对生活中的案例,运用k-means算法和isodata聚类算法进行数据评价和分析.本文是…
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不同类型,通常有以下几种: (1)层次的与划分的:如果允许簇具有子簇,则我们得到一个层次聚类.层次聚类是嵌套簇的集族,组织成一棵树.划分聚类简单地将数据对象划分成不重叠的子集(簇),使得每个数据对象恰在一个子集中. (2)互斥的.重叠的与模糊的:互斥的指每个对象都指派到单个簇.重叠的或是模糊聚类用来反…
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不同类型,通常有以下几种: (1)层次的与划分的:如果允许簇具有子簇,则我们得到一个层次聚类.层次聚类是嵌套簇的集族,组织成一棵树.划分聚类简单地将数据对象划分成不重叠的子集(簇),使得每个数据对象恰在一个子集中. (2)互斥的.重叠的与模糊的:互斥的指每个对象都指派到单个簇.重叠的或是模糊聚类用来反…
摘自:http://ramsey16.net/%E8%81%9A%E7%B1%BB%EF%BC%88%E4%B8%89%EF%BC%89fuzzy-c-means/ 经典k-均值聚类算法的每一步迭代中,每一个样本点都被认为是完全属于某一类别.我们可以放松这个条件,假定每个样本xjxj模糊“隶属”于某一类的. 硬聚类把每个待识别的对象严格的划分某类中,具有非此即彼的性质:模糊聚类建立了样本对类别的不确定描述,更能客观的反应客观世界,从而成为聚类分析的主流. 例1.一个一维的例子来说,给定一个特定数…
K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小. 使用方法:Idx=Kmeans(X,K)[Idx,C]=Kmeans(X,K) [Idx,C,sumD]=Kmeans(X,K) [Idx,C,sumD,D]=Kmeans(X,K) […]=Kmeans(…,’Param1’,Val1,’Param2’,Val2,…) 各输入输出参数介绍: X N*P的数据矩阵K 表示将X划分为几类,为整数Idx N*1的向量,存储的是每个点的聚类标号…
眼下,SPARK在大数据处理领域十分流行.尤其是对于大规模数据集上的机器学习算法.SPARK更具有优势.一下初步介绍SPARK在linux中的部署与使用,以及当中聚类算法的实现. 在官网http://spark.apache.org/上直接下载编译好的tar安装包能够加快部署速度. spark的执行依赖于scala2.10.4,注意此版本号一定要正确,否则spark不能正确执行. 1.scala的安装非常easy.在官网http://www.scala-lang.org上下载安装包,解压到随意路…
MATLAB中“fitgmdist”的用法及其GMM聚类算法 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 高斯混合模型的基本原理:聚类——GMM,MATLAB官方文档中有关于fitgmdist的介绍:fitgmdist.我之前写过有关GMM聚类的算法:GMM算法的matlab程序.这篇文章主要应用MATLAB自带的函数来进行聚类. 1. fitgmdist函数介绍 fitgmdist的使用形式:gmm = fitgmdist(X,k,Name,V…
本人以前主要focus在传统音频的软件开发,接触到的算法主要是音频信号处理相关的,如各种编解码算法和回声消除算法等.最近切到语音识别上,接触到的算法就变成了各种机器学习算法,如GMM等.K-means作为其中比较简单的一种肯定是要好好掌握的.今天就讲讲K-means的基本原理和代码实现.其中基本原理简述(主要是因为:1,K-means比较简单:2,网上有很多讲K-means基本原理的),重点放在代码实现上. 1, K-means基本原理 K均值(K-means)聚类算法是无监督聚类(聚类(clu…
不管是实验室研究机器学习算法或是公司研发,都有需要自己改进算法的时候,下面就说说怎么在weka里增加改进的机器学习算法. 一 添加分类算法的流程 1 编写的分类器必须继承 Classifier或是Classifier的子类:下面用比较简单的zeroR举例说明: 2 复写接口 buildClassifier,其是主要的方法之一,功能是构造分类器,训练模型: 3 复写接口 classifyInstance,功能是预测一个标签的概率:或实现distributeForInstance,功能是对得到所有的…