CF739E Gosha is hunting】的更多相关文章

题目链接 CF739E 题解 抓住个数的期望即为概率之和 使用\(A\)的期望为\(p[i]\) 使用\(B\)的期望为\(u[i]\) 都使用的期望为\(p[i] + u[i] - u[i]p[i]\) 当然是用越多越好 但是他很烦地给了个上限,我们就需要作出选择了 有一个很明显的\(O(n^3)\)的\(dp\),显然过不了 但我们有一个很好的\(WQS\)二分 我们非常想去掉这个上限 那就去掉吧,但是每用一次都要付出一个代价 我们二分这个代价,当使用次数恰好为为\(a\)和\(b\)时就是…
我是从其他博客里看到这题的,上面说做法是wqs二分套wqs二分?但是我好懒呀,只用了一个wqs二分,于是\(O(nlog^2n)\)→\(O(n^2logn)\) 首先我们有一个\(O(n^3)\)的暴力\(DP\),转移好写,形式优美,但复杂度不对 该怎样发现它的凸性质呢 1.打表√ 2.冷静分析一波,每一种球肯定是越多越好,于是我们先固定选择\(a\)个普通球,然后那\(b\)个大师球肯定是从大到小挑选.这样的话每多选一个,新增的收益就会下降一点,也就是说这是个上凸函数.(口胡如果假的话,就…
法一: 匹配问题,网络流! 最大费用最大流,S到A,B流a/b费0,A,B到i流1费p[i]/u[i],同时选择再减p[i]*u[i]? 连二次!所以i到T流1费0流1费-p[i]*u[i] 最大流由于ab都选择完最优 最大费用,所以不会第一次走-p[i]*u[i] 法二: DP怎么写? dp[i][j][k] 优化? 一定选择a.b个! 恰好选择a.b个? WQS二分! 一定是满足凸函数的性质的 所以选择若干个a,代价ca,求dp[i][b] 再次WQS二分! 所以选择若干个a,b,代价ca,…
根据期望的线性性答案就是捕捉每一只精灵的概率之和. 捕捉一只精灵的方案如下: 1.使用一个\(A\)精灵球,贡献为\(A[i]\) 2.使用一个\(B\)精灵球,贡献为\(B[i]\) 3.使用一个\(A\)精灵球和一个\(B\)精灵球,贡献为\(A[i]+B[i]-A[i]*B[i]\) 然后我们可以这样建图: 源点\(S\)向两个精灵球连容量为精灵球数量,费用为\(0\)的边. \(A\)精灵球向i连容量为\(1\),费用为\(A[i]\)的边. \(B\)精灵球向i连容量为\(1\),费用…
本来没有打算写题解的,时间有点紧.但是这个wqs二分看了好久才明白还是写点东西吧. 题解就直接粘dg的了: 赤(red) 本题来自codeforces 739E,加大了数据范围. 首先对一只猫不会扔两个及以上数量的同种食物.最优方案一定把食物用完. 每只猫对期望的贡献可以根据期望的线性性分开算的,不投喂,则这只猫贡献为0; 只喂干脆面,贡献为pi;只喂豆干,贡献为qi;两种都喂,贡献为pi+qi-pi*qi 算法1: 对于每只猫,只有4种情况,所以我们大力枚举一下,单组数据O(4^n),可以通过…
纪念合格考爆炸. 其实这个题之前就写过博客了,qwq但是不小心弄丢了,所以今天来补一下. 首先,一看到球的个数的限制,不难相当用网络流的流量来限制每个球使用的数量. 由于涉及到最大化期望,所以要使用最大费用最大流. 我们新建两个点\(ss,tt\),分别表示两种球. 那么我们现在考虑应该怎么计算期望呢. 首先,如果假设如果对于一个怪物用一个球,那么连边也就比较容易了 对于一个怪物\(x\) 我们\(ss -> x\),费用为\(p[i]\),流量为1.表示一个球在一个怪物上只能用一次. \(tt…
[CF739E]Gosha is hunting 题意:有n个小精灵,你有a个普通球和b个超级球,用普通球抓住第i只小精灵的概率为$A_i$,用超级球抓住第i只小精灵的概率为$u_i$.你必须一开始就决定向哪些精灵投掷哪些精灵球,同种的球只能对一个精灵用一次,可以对一只精灵投掷两种球,如果两次中有一次抓到则视为抓到.问你如果采用最优的方案,最终抓到小精灵的期望个数是多少. $n\le 2000$. 题解:我们先将所有小精灵按$B$排序,然后我们枚举最后一个投b或ab的小精灵i,那么不难证明i左边…
[CF739E]Gosha is hunting(动态规划,凸优化) 题面 洛谷 CF 题解 一个\(O(n^3)\)的\(dp\)很容易写出来. 我们设\(f[i][a][b]\)表示前\(i\)个怪,两种球用了\(a,b\)个的最大期望, 直接用概率转移就好了.然而这样子会TLE飞. 发现可以凸优化,对于其中一个球给它二分一个权值,表示每使用一次就需要额外花费掉这么多的权值,同时不再限制使用的个数. 然后忽略这一个限制,做\(dp\),利用最优解使用的这种球的个数以及限制个数继续二分. 两维…
点此看题面 大致题意: 你有两种捕捉球(分别为\(A\)个和\(B\)个),要捕捉\(n\)个神奇宝贝,第\(i\)个神奇宝贝被第一种球捕捉的概率是\(s1_i\),被第二种球捕捉的概率是\(s2_i\),问在最优策略下期望捕捉到的神奇宝贝数量. \(WQS\)二分 这应该是一道比较经典的\(WQS\)二分题(毕竟是 \(WQS\)二分套\(WQS\)二分). \(WQS\)二分套\(WQS\)二分 如果你知道\(WQS\)二分,应该就不难想到\(WQS\)二分一个代价\(C1\),表示每使用一…
题意:现在有n个精灵,两种精灵球各m1和m2个,每个精灵单独使用第一种精灵球有pi的概率被捕获,单独使用第二种精灵球有ui的概率被捕获,同时使用有1-(1-pi)*(1-ui)的概率被捕获.一种精灵球在一个精灵身上只能用一次,但你可以在一个精灵上用两种精灵球.求最优策略下期望获得精灵的只数. 如果一只精灵上不能同时用两种精灵球,那么就是一个显然的费用流建图,点A表示第一种精灵球,点B表示第二种精灵球,源点向A,B各连一条流量等于对应精灵球数目的边(费用为0),A,B分别向每个精灵连一条流量为1,…
传送门 题意:nnn个物品,有aaa个XXX道具和bbb个YYY道具,XXX道具移走第iii个物品概率为pip_ipi​,YYY道具移走第iii个道具概率为uiu_iui​. 对于每个物品每种道具最多用一次且只能被移走一次,现在问对于道具的所有分配方案中移走物品的总个数的期望最大值是多少. 思路: 有一个很显然的O(n3)dp:fi,j,kO(n^3)dp:f_{i,j,k}O(n3)dp:fi,j,k​表示前iii个物品用jjj个XXX道具和kkk个YYY道具的最大期望. 然后暴力代码如下:…
很神奇的一题 看完题解不由惊叹 题意:$n$个神奇宝贝 $a$个普通球 $b$个高级球 普通球抓住$i$神奇宝贝的概率为$u[i]$ 高级球为$p[i]$ 一起用为$u[i]+p[i]-u[i]*p[i]$ 求期望抓到个神奇宝贝个数 $N,a,b\leq2000$ 首先不难想到$O(n^3)$的暴力$DP$ 听说CF的机子可过 我们接下来写如何优化 对于一个凸函数$f(x)$ 我们假设可以通过某种特殊方式获得其的极值和极值点 令$F(x)=f(x)-kx$ 不难发现$F(x)$也是一个凸函数 仍…
题目链接 \(Description\) 有\(n\)只精灵,两种精灵球(高级和低级),每种球能捕捉到第\(i\)只精灵的概率已知.求用\(A\)个低级球和\(B\)个高级球能捕捉到精灵数的最大期望. \(n\leq10^5\). \(Solution\) 设\(f[i][a][b]\)表示前\(i\)只用了\(a\)个低级球,\(b\)个高级球的最大期望.转移时四种情况显然.复杂度\(\mathcal O(nAB)\). 随着某种球可使用数的增多,f应是凸函数,即增长越来越慢.而且两种球都满足…
有 $n$ 个 Pokemon,你有 $A$ 个一类精灵球,$B$ 个二类精灵球 分别给出每个 Pokemon 被这两类精灵球捕捉的概率 求抓到 Pokemon 的最优期望个数 $n\leq 2000$ sol: 2900 分的题竟然卡了一会... 看来我真的 sb 如果只有一种精灵球,就是带权二分,如果两种,带权二分套带权二分就可以了 两层带权二分之后 dp 一波,记一下答案以及对应的一.二类精灵球数量就可以了 代码咕,心态崩了…
这道题有三种做法,感受一下: 感觉到了歪果仁费尽脑汁想出来的神仙贪心脑洞题被中国人套路算法踩爆的凄凉...(我的名字是不是暴露了我的真实实力) =================================================================================== 首先先要明白:有A个A球,B个B球,用了一个A球贡献为ai,B球贡献为bi,两个都用贡献为1-(1-ai)(1-bi)=ai+bi-ai*bi 先讲讲最无脑的费用流吧... 显然st先分别…
今天模拟赛有一道林克卡特树,完全没有思路 赛后想了一想,不就是求\(k+1\)条不相交的链,使其权值之和最大嘛,傻了. 有一个最裸的\(DP\),设\(f[i][j][k]\)表示在以\(i\)为根的子树中,选了\(j\)条链,\(k=0\)表示\(i\)不在链上,\(k=1\)表示\(i\)是链的一端,\(k=2\)表示\(i\)在链的中间 这样就随便转移了,就是个\(O(nk^2)\)的树上背包 然后呢,又傻了,这能怎么优化? 我先在这里Orz一下大佬BLUESKY007,没有学过wqs二分…
论文 提出问题 在某些题目中,强制规定只能选 \(k\) 个物品,选多少个和怎么选都会影响收益,问最优答案. 算法思想 对于上述描述的题目,大部分都可以通过枚举选择物品的个数做到 \(O(nk^2)\) 或 \(O(nk)\) 的 \(\mathrm{DP}\),如果没有选择个数的限制的话,复杂度大概会降为 \(O(n)\) 级别. 先不考虑数量限制. 假设要最小化权值. 还是拿题说吧:给定长度为 \(n\) 的正整数序列,要求将该序列划分为 \(k\) 段,记每段之和为 \(sum(i)\),…
常见DP模型及其构造 序列DP ARC074 RGB Sequence 题意 给你一个长度为 \(n\) 的序列和 \(m\) 组约束条件,每组条件形如 \(l_i,r_i,x_i\),表示序列上的 \([l_i,r_i]\) 中恰好有 \(x_i\) 种颜色,现在要你用三种颜色给这个序列染色,求满足所有约束的方案数. \(n,m \le 300\). 技巧:设计出契合数据范围的状态 题解 注意到最多只有三种颜色,因此可以把颜色的信息记得暴力一些.设 \(dp[i][j][k]\) 表示三种颜色…
前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [Done]洛谷P2511 [HAOI2008]木棍分割 [Done]洛谷P4099 [HEOI2013]SAO [Done]NOIAC37 染色 单调队列优化 前置技能:单调队列(经典的问题模型:洛谷P1886 滑动窗口) 用于优化形如\(f_i=\min/\max_{j=l_i}^{i-1}\{g_…
其实是一个还算 trivial 的知识点吧--早在 2019 年我就接触过了,然鹅当时由于没认真学并没有把自己学懂,故今复学之( 1. 决策单调性 引入:在求解 DP 问题的过程中我们常常遇到这样的问题:我们列出了一个 \(dp\) 状态转移方程式形如 \(dp_i=\min\limits_{j<i}dp_j+w(j+1,i)\) 或类似的形式,暴力转移时间复杂度 \(\mathcal O(n^2)\) 过不去,但是你发现这里的代价函数 \(w(l,r)\) 有一些比较好的性质,譬如单调性或凹凸…
标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 \(f_{i,0/1}\) 分别表示不选(\(0\))/ 选(\(1\))点 \(i\) 的最大权值,那么有 \(f_{i,0}=\sum_{x\in S_i}\max(f_{x,0},f_{x,1}),f_{i,1}=v_i+\sum_{x\in S_i}f_{i,0}\). 如果加上修改操作,那…
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noip前的杂题训练,我也很无奈啊 做完了的扔最后,欢迎好题推荐 这么多题肯定是完不成了,能多做一道是一道吧 DP yyb真是强得不要不要的辣:http://www.cnblogs.com/cjyyb/category/1036536.html [ ] [SDOI2010]地精部落 https://www…
前言 \(WQS\)二分听起来是个很难的算法,其实学起来也并不是那么难. 适用范围 在某些题目中,会对于某个取得越多越优的物品,限定你最多选择\(k\)个,问你能得到的最优答案. 例如这道题目:[CF739E]Gosha is hunting. 这些题目一般都可以通过枚举选择的物品个数并\(O(n)DP\)来做到\(O(nk)\). 但如果随着选择物品个数的增加,得到贡献的斜率是不递增的,我们就可以用\(WQS\)二分,来将\(O(nk)\)的时间复杂度优化为\(O(nlogn)\). 大致思想…
点此进入比赛 得分: \(100+60+100\)(挺好的,涨了一波\(Rating\)) 排名: \(Rank\ 1\) \(Rating\):\(+115\) \(T1\):[HHHOJ13]金(点此看题面) 原题: [洛谷2152][SDOI2009] SuperGCD 将这道题的题意一转化,其实就是给你两个数,让你判断这两个是否互质. 而\(x\)与\(y\)互质和\(gcd(x,y)=1\)是一个意思. 所以只要求出\(gcd(x,y)\)即可. 为了避免使用高精,我们可以写\(Pyt…
前言 为了不久之后的\(NOIP2018\),我们的停课从今天(\(Oct\ 24th\))起正式开始了. 本来说要下周开始的,没想到竟提早了几天,真是一个惊喜.毕竟明天有语文考试.后天有科学考试,逃过了一劫. 这篇博客记录的便是停课这段时间的经历. 当然,这篇博客中有许多空链接,请谅解. \(Oct\ 24th\) 上午 一场\(NOIP2018\)线下模拟赛,\(AC\)了\(T1\)和\(T3\),\(T2\)悲惨爆\(0\)... .. 下午 花了一个下午写一道\(KD-Tree\)板子…
wqs二分学习笔记 wqs二分适用题目及理论分析 wqs二分可以用来解决这类题目: 给你一个强制要求,例如必须\(n\)条白边,或者划分成\(n\)段之类的,然后让你求出最大(小)值.但是需要满足图像是个凸包. 这里讲一下它的原理.假设我们现在需要解决的问题是求分\(x\)段的最小花费.我们假设对于每个\(x\)它的最小花费\(f(x)\)的图像长成这个样子: 当然,这只是个大概图像. 我们假设拿一条斜率为\(k\)的直线去切它,我们假设切到的截距最大值为\(g(k)\),使截距最大点为\(n\…
这一系列文章感觉写的不好,思维跨度很大,原本是由于与<Angularjs in action>有种相见恨晚而激发要写点读后感之类的文章,但是在翻译或是阐述的时候还是会心有余而力不足,零零总总的写了<Angularjs in action>读书笔记的前三篇.渐渐明白,将新知识搞懂是一门本事,而将自己明白的share出去并让别人也明白更是一门学问.几篇翻译下来,感觉有些苍白,有网友给建议说是真枪实战的做点东西,结合代码更有说服力.想想也是,纸上得来终觉浅,绝知此事要躬行.于是乎就有了&…
Gift Hunting Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1418 Accepted Submission(s): 471 Problem Description After winning two coupons for the largest shopping mart in your city, you can't wa…
from: http://www.raizlabs.com/dev/2014/04/hunting-your-leaks-memory-management-in-android-part-2-of-2/ HUNTING YOUR LEAKS: MEMORY MANAGEMENT IN ANDROID (PART 2 OF 2) Posted  APRIL 9, 2014 by  JOE MAHON Woo-hoo! Now you know what is happening with you…
/* HDU3236 Gift Hunting http://acm.hdu.edu.cn/showproblem.php?pid=3236 dp 滚动数组 * * */ #include <cstdio> #include <algorithm> using namespace std; ; const int INF=1e9; ][][][]; int v1,v2,n,ans; struct A { int w; int v; int is; }a[Nmax]; void in…