这一个专题将会是有关AlphaGo的前世今生以及其带来的AI革命,总共分成三节.本人水平有限,如有错误还望指正.如需转载,须征得本人同意. Road to AI Revolution(通往AI革命之路),在这里我们将探索AlphaGo各项核心技术的源头及发展历程: Countdown to AI Revolution(AI革命倒计时),在这里我们将解构AlphaGo,看它是如何诞生的: AI Revolution and Beyond(AI革命及未来发展),在这里我们将解构AlphaGo Zer…
文章目录 [隐藏] 1. 强化学习和深度学习结合 2. Deep Q Network (DQN) 算法 3. 后续发展 3.1 Double DQN 3.2 Prioritized Replay 3.3 Dueling Network 4. 总结 强化学习系列系列文章 我们终于来到了深度强化学习. 1. 强化学习和深度学习结合 机器学习=目标+表示+优化.目标层面的工作关心应该学习到什么样的模型,强化学习应该学习到使得激励函数最大的模型.表示方面的工作关心数据表示成什么样有利于学习,深度学习是最…
从这里开始换个游戏演示,cartpole游戏 Deep Q Network 实例代码 import sys import gym import pylab import random import numpy as np from collections import deque from keras.layers import Dense from keras.optimizers import Adam from keras.models import Sequential EPISODES…
1. 前言 在前面的章节中我们介绍了时序差分算法(TD)和Q-Learning,当状态和动作空间是离散且维数不高时可使用Q-Table储存每个状态动作对的Q值,而当状态和动作空间是高维连续时,使用Q-Table不动作空间和状态太大十分困难.所以论文Human-level control through deep reinforcement learning提出了用Deep Q Network(DQN)来拟合Q-Table,使得Q-Table的更新操作包在一个黑盒里面,使强化学习的过程更加的通用化…
原文地址:https://blog.csdn.net/qq_30615903/article/details/80744083 DQN(Deep Q-Learning)是将深度学习deeplearning与强化学习reinforcementlearning相结合,实现了从感知到动作的端到端的革命性算法.使用DQN玩游戏的话简直6的飞起,其中fladdy bird这个游戏就已经被DQN玩坏了.当我们的Q-table他过于庞大无法建立的话,使用DQN是一种很好的选择 1.算法思想 DQN与Qlean…
深度强化学习(DQN-Deep Q Network)之应用-Flappy Bird 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10811587.html 目录 1.达到的目的 2.思路 2.1.强化学习(RL Reinforcement Learing) 2.2.深度学习(卷积神经网络CNN) 3.踩过的坑 4.代码实现(python3.5) 5.运行结果与分析 1.达到的目的 游戏场景:障碍物以一定速度往…
Deep Neural Network for Image Classification: Application 预先实现的代码,保存在本地 dnn_app_utils_v3.py import numpy as np import matplotlib.pyplot as plt import h5py def sigmoid(Z): """ Implements the sigmoid activation in numpy Arguments: Z -- numpy…
作者: ShijieSun, Naveed Akhtar, HuanShengSong, Ajmal Mian, Mubarak Shah 来源: arXiv:1810.11780v1 项目:https://github.com/shijieS/SST.git 摘要 MOT方法一般包含两个步骤:目标检测和数据关联. 目标检测这两年随着深度学习的发展而迅速发展,但是数据关联绝大多数还是采用hand crafted的方式将表观特征,运动信息,空间关系,group关系等进行结合. 这篇文章则是利用深度…
论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware composite deep neural network for speech enhancement[J]. Speech Communication,2022,136:1-13. 摘要 目前,利用深度神经网络(DNN)进行语音增强的大多数方法都面临着一些限制:它们没有利用相位谱中的信息,同时它们的高计算…
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 总结与收获点 作者和相关链接 作者 论文下载 廖明辉,石葆光, 白翔, 王兴刚 ,刘文予 代码下载 方法概括 文章核心: 改进版的SSD用来解决文字检测问题 端到端识别的pipeline: Step 1: 图像输入到修改版SSD网络中 + 非极大值抑制(NMS)→…