一.概述 1.Socket:之前的wordcount例子,已经演示过了,StreamingContext.socketTextStream() 2.HDFS文件 基于HDFS文件的实时计算,其实就是,监控一个HDFS目录,只要其中有新文件出现,就实时处理.相当于处理实时的文件流. streamingContext.fileStream<KeyClass, ValueClass, InputFormatClass>(dataDirectory) streamingContext.fileStre…
输入DStream之基础数据源以及基于HDFS的实时wordcount程序 一.Java方式 二.Scala方式 基于HDFS文件的实时计算,其实就是,监控一个HDFS目录,只要其中有新文件出现,就实时处理,相当于处理实时的文件流. streamingContext.fileStream<KeyClass,ValueClass,InputFormatClass>(dataDirectory) streamingContext.fileStream[KeyClass,ValueClass,Inp…
一.updateStateByKey 1.概述 SparkStreaming 7*24 小时不间断的运行,有时需要管理一些状态,比如wordCount,每个batch的数据不是独立的而是需要累加的,这时就需要sparkStreaming来维护一些状态, 目前有两种方案updateStateByKey&mapWithState,mapWithState是spark1.6新加入的保存状态的方案,官方声称相比updateStateByKey有10倍性能提升. updateStateByKey底层是将p…
输入DStream代表了来自数据源的输入数据流.在之前的wordcount例子中,lines就是一个输入DStream(JavaReceiverInputDStream), 代表了从netcat(nc)服务接收到的数据流.除了文件数据流之外,所有的输入DStream都会绑定一个Receiver对象,该对象是一个关键的组件, 用来从数据源接收数据,并将其存储在Spark的内存中,以供后续处理. Spark Streaming提供了两种内置的数据源支持: 1.基础数据源:StreamingConte…
一.基于Receiver的方式 1.概述 基于Receiver的方式: Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的, 然后Spark Streaming启动的job会去处理那些数据. 然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据.如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的 预写日志机制(Write Ahead Log,WAL)…
一.java版本 package cn.spark.study.streaming; import java.util.Arrays; import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.fu…
DStream 1.1基本说明 1.1.1 Duration Spark Streaming的时间类型,单位是毫秒: 生成方式如下: 1)new Duration(milli seconds) 输入毫秒数值来生成: 2)seconds(seconds) 输入秒数值来生成: 3)Minutes(minutes) 输入分钟数值来生成: 1.1.2 slideDuration /** Time interval after which the DStream generates a RDD */ de…
Spark是一个分布式内存计算框架,可部署在YARN或者MESOS管理的分布式系统中(Fully Distributed),也可以以Pseudo Distributed方式部署在单个机器上面,还可以以Standalone方式部署在单个机器上面.运行Spark的方式有interactive和submit方式.本文中所有的操作都是以interactive方式操作以Standalone方式部署的Spark.具体的部署方式,请参考Hadoop Ecosystem. HDFS是一个分布式的文件管理系统,其…
Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java…
一.基础核心概念 1.StreamingContext详解 (一) 有两种创建StreamingContext的方式:             val conf = new SparkConf().setAppName(appName).setMaster(master);             val ssc = new StreamingContext(conf, Seconds(1)); StreamingContext, 还可以使用已有的SparkContext来创建         …