LDA和PCA降维的原理和区别】的更多相关文章

 LDA算法的主要优点有: 在降维过程中可以使用类别的先验知识经验,而像PCA这样的无监督学习则无法使用类别先验知识. LDA在样本分类信息依赖均值而不是方差的时候,比PCA之类的算法较优. LDA算法的主要缺点有: LDA不适合对非高斯分布样本进行降维,PCA也有这个问题. LDA降维最多降到类别数k-1的维数,如果我们降维的维度大于k-1,则不能使用LDA.当然目前有一些LDA的进化版算法可以绕过这个问题. LDA在样本分类信息依赖方差而不是均值的时候,降维效果不好. LDA可能过度拟合数据…
PCA(主成分分析法) 1. PCA(最大化方差定义或者最小化投影误差定义)是一种无监督算法,也就是我们不需要标签也能对数据做降维,这就使得其应用范围更加广泛了.那么PCA的核心思想是什么呢? 例如D维变量构成的数据集,PCA的目标是将数据投影到维度为K的子空间中,要求K<D且最大化投影数据的方差.这里的K值既可以指定,也可以利用主成分的信息来确定. PCA其实就是方差与协方差的运用. 降维的优化目标:将一组 N 维向量降为 K 维,其目标是选择 K 个单位正交基,使得原始数据变换到这组基上后,…
PCA可以将数据从原来的向量空间映射到新的空间中.由于每次选择的都是方差最大的方向,所以往往经过前几个维度的划分后,之后的数据排列都非常紧密了, 我们可以舍弃这些维度从而实现降维 原理 内积 两个向量的乘积满足:\(ab= |a|\cdot |b|\cdot cos(\theta)\).如果\(|b|=1\)的话,\(ab=|a| \cdot cos(\theta)\). 而这个式子的含义就是a在b方向上的投影长度.pca用投影的长度的方差来衡量一个向量基的好坏. 基变换的矩阵表示 如果我想要把…
一.LDA算法 基本思想:LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术. 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大. 浅显来讲,LDA方法的考虑是,对于一个多类别的分类问题,想要把它们映射到一个低维空间,如一维空间从而达到降维的目的,我们希望映射之后的数据间,两个类别之间“离得越远”,且类别内的数据点之间“离得越近”,这样…
PCA降维 一.原理 这篇文章总结的不错PCA的数学原理. PCA主成分分析是将原始数据以线性形式映射到维度互不相关的子空间.主要就是寻找方差最大的不相关维度.数据的最大方差给出了数据的最重要信息. 二.优缺点 优:将高维数据映射到低维,降低数据的复杂性,识别最重要的多个特征 不足:不一定需要,且可能损失有用信息 适用数值型数据 三.步骤 1.原始数据X,对于每列属性,去平均值(也可以对数值进行标准分化) 2.计算样本点的协方差矩阵(列间两两计算相关性) 3.求出协方差矩阵的特征值和对应的特征向…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果拿到实际工程中去跑,效果不一定好.一是因为冗余的特征会带来一些噪音,影响计算的结果:二是因为无关的特征会加大计算量,耗费时间和资源.所以我们通常会对数据重新变换一下,再跑模型.数据变换的目的不仅仅是降维,还可以消除特征之间的相关性,并发现一些潜在的特征变量. 降维算法由很多,比如PCA…
一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼就能看出来,数学,物理,化学这三门课的成绩构成了这组数据的主成分(很显然,数学作为第一主成分,因为数据成绩拉的最开). 那么为什么我们能一眼看出来呢? 当然是我们的坐标轴选对了!! 下面,我们继续看一个表格,下标是一组学生的数学,物理,化学,语文,历史,英语成绩统计: 那么这个表我们能一眼看出来吗?…
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…
一.PCA算法的原理 PCA(principle component analysis),即主成分分析法,是一个非监督的机器学习算法,是一种用于探索高维数据结构的技术,主要用于对数据的降维,通过降维可以发现更便于人理解的特征,加快对样本有价值信息的处理速度,此外还可以应用于可视化(降到二维)和去噪. PCA本质上是将方差最大的方向作为主要特征,并且在各个正交方向上将数据“离相关”,也就是让它们在不同正交方向上没有相关性.                                      …
   \(LDA\)是一种比较常见的有监督分类方法,常用于降维和分类任务中:而\(PCA\)是一种无监督降维技术:\(k\)-means则是一种在聚类任务中应用非常广泛的数据预处理方法.    本文的主要写作出发点是:探讨无监督情况下,\(LDA\)的类内散度矩阵和类间散度矩阵与\(PCA\)和\(k\)-means之间的联系. 1.常规有监督\(LDA\)的基本原理:   (1) \(LDA\)的目标函数:    关于\(LDA\)的产生及理论推导,大家参考:"线性判别分析LDA原理总结&qu…
http://blog.json.tw/using-matlab-implementing-pca-dimension-reduction 設有m筆資料, 每筆資料皆為n維, 如此可將他們視為一個mxn matrix.若資料的維度太大時, 可能不利於分析, 例如這m筆資料用作機器學習. PCA的想法是算出這mxn matrix的斜方差矩陣, 此矩陣大小為nxn, 計算此矩陣n個特徵值(eigen value)及其對應的特徵向量(eigen vector), 依eigen value大小由小到大排…
K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis) 管理计算机集群(Organize Computer Clusters) 天文学数据分析(Astronomical Data Analysis) K-Means算法属于非监督式学习的一种,算法的输入是:训练数据集$\{x^{(1)},x^{(2)},\ldots, x^{(m)}\}$(其中$x^…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维 数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助 读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读…
PCA 的数学原理和可视化效果 本文结构: 什么是 PCA 数学原理 可视化效果 1. 什么是 PCA PCA (principal component analysis, 主成分分析) 是机器学习中对数据进行降维的一种方法. 例如,我们有这样的交易数据,它有这几个特征:(日期, 浏览量, 访客数, 下单数, 成交数, 成交金额),从经验可知,“浏览量”和“访客数”,“下单数”和“成交数”之间会具有较强的相关关系.这种情况下,我们保留其中的两个维度就可以保证原有的信息完整. 但是当我们在做降维的…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
之前对PCA的原理挺熟悉,但一直没有真正使用过.最近在做降维,实际用到了PCA方法对样本特征进行降维,但在实践过程中遇到了降维后样本维数大小限制问题. MATLAB自带PCA函数:[coeff, score, latent, tsquared] = pca(X) 其中,X是n*p的,n是样本个数,p是特征维数. (1)coeff矩阵是返回的转换矩阵,就是把原始样本转换到新空间中的转换矩阵. (2)score是原始样本矩阵在新样本空间中的表示,也就是原始样本乘上转换矩阵,但是还不是直接乘,要减去一…
转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analysis ( 主成分分析) 最近发现我的一篇关于PCA算法总结以及个人理解的博客的访问量比较高, 刚好目前又重新学习了一下PCA (主成分分析) 降维算法, 所以打算把目前掌握的做个全面的整理总结, 能够对有需要的人有帮助. 自己再看自己写的那个关于PCA的博客, 发现还是比较混乱的, 希望这里能过做好…
PCA降维技术 PCA 降维 Fly Time: 2017-2-28 主成分分析(PCA) PCA Algorithm 实例 主成分分析(PCA) 主成分分析(Principal Component Analysi)是一种掌握可以提取主要特征对的方法,它可以从多元失误中解析出主要影响因素.计算朱成福的目的是将高维数据投影到低维空间.主要是用于降维,提取数据的主要特征分量. 降维,当然以为着信息的丢失,但是鉴于数据本身常常存在相关性,我们可以想办法在降维的同时将信息的随时尽量降低. PCA Alg…
线性模型之LDA和PCA 线性判别分析LDA LDA是一种无监督学习的降维技术. 思想:投影后类内方差最小,类间方差最大,即期望同类实例投影后的协方差尽可能小,异类实例的投影后的类中心距离尽量大. 二分类推导 给定数据集\(D=\{(x_i,y_i)\}_{i=1}^m\),令\(X_i,\mu_i,\sum_i\)分别表示第\(i\in \{0,1\}\)类实例的集合,均值,和协方差矩阵 则两类样本中心点在\(w\)方向直线的投影分别为\(w^Tu_0,w^Tu_1\):若将所有的样本点都投影…
PCA降维的数学原理 PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格…
前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子,引出PCA算法: 2)理论推导.主要介绍PCA算法的理论推导以及对应的数学含义: 3)算法步骤.主要介绍PCA算法的算法流程: 4)应用实例.针对PCA的实际应用,列出两个应用实例: 5)常见问题补充.对于数据预处理过程中常遇到的问题进行补充: 6)扩展阅读.简要介绍PCA的不足,并给出K-L变换…
opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as np import os import cv2 # plt显示灰度图片 def plt_show(img): plt.imshow(img,cmap='gray') plt.show() # 读取一个文件夹下的所有图片,输入参数是文件名,返回文件地址列表 def read_directory(dire…
机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特征.比如在泰坦尼克号乘员生存预测的问题中我们会将姓名作为无用信息进行处理,这是我们可以从直观上比较好理解的.但是有些特征之间可能存在强相关关系,比如研究一个地区的发展状况,我们可能会选择该地区的GDP和人均消费水平这两个特征作为一个衡量指标.显然这两者之间是存在较强的相关关系,他们描述的都是该地区的…
HashMap 是否是线程安全的,如何在线程安全的前提下使用 HashMap,其实也就是HashMap,Hashtable,ConcurrentHashMap 和 synchronized Map 的原理和区别.当时有些紧张只是简单说了下HashMap不是线程安全的:Hashtable 线程安全,但效率低,因为是 Hashtable 是使用 synchronized 的,所有线程竞争同一把锁:而 ConcurrentHashMap 不仅线程安全而且效率高,因为它包含一个 segment 数组,将…
重点整理: PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法 1.原始数据: 假定数据是二维的 x=[2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1, 1.5, 1.1]T y=[2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9]T 2.计算协方差矩阵 (1)协方差矩阵: 标准差和方差一般是用来描述一维数据的 协方差就是一种用来度量两个随机变量关系的统计量(协方差…
目录 1. PCA降维 PCA:主成分分析(Principe conponents Analysis) 2. 维度的概念 一般认为时间的一维,而空间的维度,众说纷纭.霍金认为空间是10维的. 3. 为什么要进行降维? 维度灾难:当维度超过一定值的时候,分类器效果呈现明显下降. PCA旨在找到数据中的主成分,并利用这些主成分表征原始数据,从而达到降维的目的.举一个简单的例子,在三维空间中有一系列数据点,这些点分布在一个过原点的平面上.如果我们用自然坐标系x,y,z三个轴来表示数据,就需要使用三个维…
atitit.交换机 汇聚上联.网络克隆和标准共享的原理与区别 1. 标准共享(标准化模式)1 2. 汇聚上联trunk1 2.1. 使用场合1 2.2. 背景1 2.3. 实现原理2 3. 网络克隆模式3 3.1. 使用场合3 3.2. 原理3 4. 参考3 1. 标准共享(标准化模式) 2. 汇聚上联trunk 2.1. 使用场合 用在无盘网等大量上行数据网中.相对标准模式对上行链路优化的更多.一般上一级还有大流量数据交换的服务器 视频播放,电影院 2.2. 背景 服务器相连接的端口(称为汇…
存个代码,以后参考. numpy次成分分析和PCA降维 SVD分解做次成分分析 原图: 次成分复原图: 代码: import numpy as np from numpy import linalg import cv2 as cv src = cv.imread("/home/xueaoru/图片/output_3_0.png") gray = cv.cvtColor(src,cv.COLOR_BGR2GRAY) S,V,D = linalg.svd(gray) vv = np.ze…
由于论文需要,开始逐渐的学习CNN关于文本抽取的问题,由于语言功底不好,所以在学习中难免会有很多函数不会用的情况..... ̄へ ̄ 主要是我自己的原因,但是我更多的把语言当成是一个工具,需要的时候查找就行~~~~但是这也仅限于搬砖的时候,大多数时候如果要自己写代码,这个还是行不通的. 简单的说一下在PCA,第一次接触这个名词还是在学习有关CNN算法时,一篇博客提到的数据输入层中,数据简单处理的几种方法之一,有提到PCA降维,因为论文需要CNN做一些相关的工作,想做一篇综述类文章,所以思路大概是这样…