视频教程请关注 http://edu.csdn.net/lecturer/lecturer_detail?lecturer_id=440/*** OpenGL8-直接分配显存-极速绘制(Opengl1.5版本才有)例子中展示了如何直接 分配显存,使用了glBindBuffer(GL_ARRAY_BUFFER_ARB, _vertexBufer)这个例 子中同样适用该函数分配显卡缓冲区,只是参数有所变化,传递的参数如下所示 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER_…
视频教程请关注 http://edu.csdn.net/lecturer/lecturer_detail?lecturer_id=440 /** * 这个例子介绍如何使用显卡内存进行绘制 下载地址 :http://files.cnblogs.com/zhanglitong/Tutorial8-%E7%9B%B4%E6%8E%A5%E5%88%86%E9%85%8D%E6%98%BE%E5%AD%98.rar 这里使用显卡缓冲区绘制,而不是使用内存缓冲区进行绘制 可以减少数据从内存传递到显存的过程…
对于显存不充足的炼丹研究者来说,弄清楚Pytorch显存的分配机制是很有必要的.下面直接通过实验来推出Pytorch显存的分配过程. 实验实验代码如下: import torch from torch import cuda x = torch.zeros([3,1024,1024,256],requires_grad=True,device='cuda') print("1", cuda.memory_allocated()/1024**2) y = 5 * x print(&quo…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6591923.html 参考网址: http://stackoverflow.com/questions/36668467/change-default-gpu-in-tensorflow http://stackoverflow.com/questions/37893755/tensorflow-set-cuda-visible-devices-within-jupyter 1 终端执行程序时设置使…
显卡使用的内存分为两部分,一部分是显卡自带的显存称为VRAM内存,另外一部分是系统主存称为GTT内存(graphics translation table和后面的GART含义相同,都是指显卡的页表,GTT 内存可以就理解为需要建立GPU页表的显存).在嵌入式系统或者集成显卡上,显卡通常是不自带显存的,而是完全使用系统内存.通常显卡上的显存访存速度数倍于系统内存,因而许多数据如果是放在显卡自带显存上,其速度将明显高于使用系统内存的情况(比如纹理,OpenGL中分普通纹理和常驻纹理). 某些内容是必…
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 本文目录 1 终端执行程序时设置使用的GPU 2 python代码中设置使用的GPU 3 设置tensorflow使用的显存大小 3.1 定量设置显存 3.2 按需设置显存 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6591923.html 参考网址: http://stackoverflo…
Tensorflow支持基于cuda内核与cudnn的GPU加速,Keras出现较晚,为Tensorflow的高层框架,由于Keras使用的方便性与很好的延展性,之后更是作为Tensorflow的官方指定第三方支持开源框架.但两者在使用GPU时都有一个特点,就是默认为全占满模式.在训练的情况下,特别是分步训练时会导致显存溢出,导致程序崩溃.可以使用自适应配置来调整显存的使用情况. 一.Tensorflow1.指定显卡代码中加入 import osos.environ["CUDA_VISIBLE_…
下面通过实验来探索Pytorch分配显存的方式. 实验 显存到主存 我使用VSCode的jupyter来进行实验,首先只导入pytorch,代码如下: import torch 打开任务管理器查看主存与显存情况.情况分别如下: 在显存中创建1GB的张量,赋值给a,代码如下: a = torch.zeros([256,1024,1024],device= 'cpu') 查看主存与显存情况: 可以看到主存与显存都变大了,而且显存不止变大了1G,多出来的内存是pytorch运行所需的一些配置变量,我们…
全局存储器,即普通的显存,整个网格中的随意线程都能读写全局存储器的任何位置. 存取延时为400-600 clock cycles  很easy成为性能瓶颈. 訪问显存时,读取和存储必须对齐,宽度为4Byte.假设没有正确的对齐,读写将被编译器拆分为多次操作,减少訪存性能. 多个warp的读写操作假设可以满足合并訪问,则多次訪存操作会被合并成一次完毕.合并訪问的条件,1.0和1.1的设备要求较严格,1.2及更高能力的设备上放宽了合并訪问的条件. 1.2及其更高能力的设备支持对8 bit.16 bi…
本文记录了在JOS(或在任意OS)上实现图形界面的方法与一些图形库的实现. 本文中支持的新特性: 支持基本图形显示 支持中英文显示(中英文点阵字库) 相关:VBE VESA MMIO 点阵字库 Github : https://github.com/He11oLiu/JOS About VESA Video Electronics Standards Association(视频电子标准协会,简称"VESA")是制定计算机和小型工作站视频设备标准的国际组织,1989年由NEC及其他8家…