R-FCN 原理 R-FCN作者指出在图片分类网络中具有平移不变性(translation invariance),而目标在图片中的位置也并不影响分类结果;但是检测网络对目标的位置比较敏感.因此Faster R-CNN将ROI的特征提取操作放在了最后分类网络中间(靠后的位置)打破分类网络的平移不变性,而不能直接放在网络的末尾.但是这样存在的问题是ROI特征提取不共享计算,导致计算量较大. 一般来讲,网络越深,其具有的平移旋转不变性越强,这个性质对于保证分类模型的鲁棒性有积极意义.然而,在检测问题…