1.概念 2.Hadoop默认分组机制--所有的Key分到一个组,一个Reduce任务处理 3.代码示例 FlowBean package com.ares.hadoop.mr.flowgroup; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.WritableComparable; public class FlowBean…
MapReduce和自定义Partition MobileDriver主类 package Partition; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; public class MobileDriver { public static void main(String[] args) { String[] paths = {"F:\\mobile.txt", "F…
我想得到按流量来排序,而且还是倒序,怎么达到实现呢? 达到下面这种效果, 默认是根据key来排, 我想根据value里的某个排, 解决思路:将value里的某个,放到key里去,然后来排 下面,开始weekend110的hadoop的自定义排序实现 将FlowSortMapper.FlowSortReduce.FlowSortRunner.FlowSortBean,全放到一个SortMR里. V2我们不要,怎么写代码? 那么,我们想要实现由 达到下面这种效果, 也要修改FlowBean代码 多领…
1:首先搞好实体类对象: write 是把每个对象序列化到输出流,readFields是把输入流字节反序列化,实现WritableComparable,Java值对象的比较:一般需要重写toString(),hashCode(),equals()方法 package com.areapartition; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apach…
matadata: hadoop a spark a hive a hbase a tachyon a storm a redis a 自定义分组 import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.had…
本文发表于本人博客. 今天接着上次[Hadoop mapreduce自定义排序WritableComparable]文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需要了解的可以看看我在博客园的评论,现在开始. 首先我们查看下Job这个类,发现有setGroupingComparatorClass()这个方法,具体源码如下: /** * Define the comparator that controls which keys are grouped toge…
现有数据如下: 3 3 3 2 3 1 2 2 2 1 1 1 要求为: 先按第一列从小到大排序,如果第一列相同,按第二列从小到大排序 如果是hadoop默认的排序方式,只能比较key,也就是第一列,而value是无法参与排序的 这时候就需要用到自定义的排序规则 解决思路: 自定义数据类型,将原本的key和value都包装进去 将这个数据类型当做key,这样就比较key的时候就可以包含第一列和第二列的值了 自定义数据类型NewK2如下: //要实现自定义的排序规则必须实现WritableComp…
[toc] 一.分区 问题:按照条件将结果输出到不同文件中 自定义分区步骤 1.自定义继承Partitioner类,重写getPartition()方法 2.在job驱动Driver中设置自定义的Partitioner 3.在Driver中根据分区数设置reducetask数 分区数和reducetask关系 案例实操 将统计结果按照手机归属地不同省份输出到不同文件中(分区),手机号136.137.138.139开头都分别放到一个独立的4个文件中,其他开头的放到一个文件中 (1)自定义分区类 M…
本节所用到的数据下载地址为:http://pan.baidu.com/s/1bnfELmZ MapReduce的排序分组任务与要求 我们知道排序分组是MapReduce中Mapper端的第四步,其中分组排序都是基于Key的,我们可以通过下面这几个例子来体现出来.其中的数据和任务如下图1.1,1.2所示. #首先按照第一列升序排列,当第一列相同时,第二列升序排列 3 3 3 2 3 1 2 2 2 1 1 1 ------------------- #结果 1 1 2 1 2 2 3 1 3 2…
原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce   (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce2.Mapreduce中Par…