概述 支持向量机是一种二分类模型,间隔最大使它有别于感知机.支持向量机学习方法由简至繁的模型:线性可分支持向量机(linear support vector machine in linearly separable data),线性支持向量机(linear support vector machine),非线性支持向量机(non-linear support vector machine). 简单模型是复杂模型的基础,也是复杂模型的特殊情况.当训练数据线性可分的时候,通过硬间隔最大化(hard…
k 近邻法(K-nearest neighbor)是一种基本的分类方法 基本思路: 给定一个训练数据集,对于新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例多数属于某个类别,就把输入实例分为这个类. 算法: 输入:训练数据集 \(T=\{(x_{1},y_{1}),(x_{2},y_{2}),...,(x_{n},y_{n})\}\) 其中 \(x_{i}\) 是训练集实例的特征向量(features vectors),\(y_{i}\) 是训练集实例的类别,\(i=1,2,…
SpringBoot解析Json格式数据 @ResponseBody 注:该注解表示前端请求后端controller,后端响应请求返回 json 格式数据前端,实质就是将java对象序列化 1.创建Controller 注:springboot默认就已经支持返回json格式数据,只需要加上@ResponseBody注解即可 /** * 通过 @responsebody 注解返回 json 格式数据 * @return */ @RequestMapping("/getAll") @Res…
SpringBoot整合freemarker 1.添加依赖:springboot基本上是无缝衔接,基本上只需要添加对应的依赖,不需要或者做很少量的配置即可 注:对于springboot项目的创建此处不做说明 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-freemarker</artifactId> </dep…
springboot单文件上传 对于springboot文件上传需要了解一个类MultipartFile ,该类用于文件上传.我此次使用thymeleaf模板引擎,该模板引擎文件后缀 .html. 1.创建controller /** * 单文件上传,使用post请求 * @param file * @return */ @PostMapping("/upload") @ResponseBody public String fileupload(MultipartFile file){…
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      强烈推荐阅读(http://www.cnblogs.com/jerrylead/archive/2011/03/13/1982639.html)          支持向量机SVM(support vector machines). SVM是一种二值分类器,是近些年比較流行的一种分类算法. 本文,首先要介绍一些主要的知识概念,在下一章将对SVM进行简单地代码实现. 2.基本概念 (1)线性…
https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/?spm=5176.100239.blogcont61037.12.0MhmIg https://yq.aliyun.com/articles/61037?spm=5176.100239.bloglist.110.rlSDN9 We are probably living in the most defining period of hu…
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/gshengod/article/details/24983333 (转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识    前面我们提到的数据集都是线性可分的.这样我们能够用SMO等方法找到支持向量的集合.然而当我们遇到线性不可分的数据集时候,是不是svm就不起作用了呢?这里用到了一种方法叫做核函数,它将低维度的数据转换成高纬度的从而实现线性可分.…
先收藏............ 本文为笔者在学习周志华老师的机器学习教材后,写的课后习题的的编程题.之前放在答案的博文中,现在重新进行整理,将需要实现代码的部分单独拿出来,慢慢积累.希望能写一个机器学习算法实现的系列. 本文主要包括: 1.logistics回归 2.python库: numpy matplotlib pandas 使用的数据集:机器学习教材上的西瓜数据集3.0α Idx density ratio_sugar label 1 0.697 0.46 1 2 0.774 0.376…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”. l“机器学习是对能通过经验自动改进的计算机算法的研究”. l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said t…
一引言: 支持向量机这部分确实很多,想要真正的去理解它,不仅仅知道理论,还要进行相关的代码编写和测试,二者想和结合,才能更好的帮助我们理解SVM这一非常优秀的分类算法 支持向量机是一种二类分类算法,假设一个平面可以将所有的样本分为两类,位于正侧的样本为一类,值为+1,而位于负一侧的样本为另外一类,值为-1. 我们说分类,不仅仅是将不同的类别样本分隔开,还要以比较大的置信度来分隔这些样本,这样才能使绝大部分样本被分开.比如,我们想通过一个平面将两个类别的样本分开,如果这些样本是线性可分(或者近视线…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analysis)有时也被翻译为簇类,其核心任务是:将一组目标object划分为若干个簇,每个簇之间的object尽可能相似,簇与簇之间的object尽可能相异.聚类算法是机器学习(或者说是数据挖掘更合适)中重要的一部分,除了最为简单的K-Means聚类算法外,比较常见的还有层次法(CURE.CHAMELEON等).网格…
机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是对支持…
机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是对支持…
机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是对支持…
机器学习算法实践:Platt SMO 和遗传算法优化 SVM 之前实现了简单的SMO算法来优化SVM的对偶问题,其中在选取α的时候使用的是两重循环通过完全随机的方式选取,具体的实现参考<机器学习算法实践-SVM中的SMO算法>.(http://pytlab.github.io/2017/09/01/机器学习算法实践-SVM中的SMO算法/) 本文在之前简化版SMO算法的基础上实现了使用启发式选取α对的方式的Platt SMO算法来优化SVM.另外由于最近自己也实现了一个遗传算法框架GAFT,便…
[注] 1.该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取: 2.Spark编译与部署将以CentOS 64位操作系统为基础,主要是考虑到实际应用一般使用64位操作系统,内容分为三部分:基础环境搭建.Hadoop编译安装和Spark编译安装,该环境作为后续实验基础: 3.文章演示了Hadoop.Spark的编译过程,同时附属资源提供了编译好的安装包,觉得编译费时间可以直接使用这些编译好的安装包进行部署. 1.运行环境说明 1.1 硬软件环境 线程,主频…
在上两节中,我们讲解了机器学习的决策树和k-近邻算法,本节我们讲解另外一种分类算法:支持向量机SVM. SVM是迄今为止最好使用的分类器之一,它可以不加修改即可直接使用,从而得到低错误率的结果. [案例背景] 从前有两个地主,他们都是占山为王的一方霸主.本来各自吃饱自己的饭万事无忧,可是人心不知足蛇吞象啊,自己总是都想占对方的一亩三分地,冲突争吵从来都没有停歇过.当时的环境就是谁狠这土地就归谁,但是我们现在想从科学的角度来分析,如何让他们的地盘均分,画条边界线,从此互不干扰呢? [演示代码] i…
---layout: posttitle: 2018-02-03-PY3下经典数据集iris的机器学习算法举例-零基础key: 20180203tags: 机器学习 ML IRIS python3modify_date: 2018-02-03--- # python3下经典数据集iris的机器学习算法举例-零基础说明:* 本文发布于: gitee,github,博客园* 转载和引用请指明原作者和连接及出处. 正文:* 以下内容可以拷贝到一个python3源码文件,比如较“iris_ml.py”当…
转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更聪明,更人性化的技术,机器学习. – 埃里克 施密特(谷歌首席执行官) 当计算从大型计算机转移至个人电脑再转移到云的今天,我们可能正处于人类历史上最关键的时期.之所以关键,并不是因为已经取得的成就,而是未来几年里我们即将要获得的进步和成就. 对我来说,如今最令我激动的就是计算技术和工具的普及,从而带…
知识点 scikit-learn 对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析. 我们也可以使用scikit-learn的线性回归函数,而不是从头开始实现这些算法. 我们将scikit-learn的线性回归算法应用于编程作业1.1的数据,并看看它的表现. 一般来说,只要觉得数据有线性关系,LinearRegression类是我们的首选.如果发现拟合或者预测的不好,再考虑用其他的线性回归库.如果是学习线性回归,推荐先从这个类开始第一步的研究. LinearRegression…
Title:ElasticSearch实战系列四: ElasticSearch的聚合查询基础使用教程之度量(Metric)聚合 前言 在上上一篇中介绍了ElasticSearch实战系列三: ElasticSearch的JAVA API使用教程,介绍了ElasticSearch Java API基础的语法,基本的增删改查(对应SQL语句), 本篇则来介绍一下ElasticSearch 聚合查询的使用JAVA API 和 DSL语句的使用 . ElasticSearch Aggregation 聚…
如果你还想从头学起Selenium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1680176.html 其次,如果你不懂前端基础知识,需要自己去补充哦,博主暂时没有总结(虽然我也会,所以我学selenium就不用复习前端了哈哈哈...) 注意,目前的实战都是流水账式写的,后面才会结合框架+PO模式 目的是为了掌握所学的Selenium基础 实战题目 访问:https://m.weibo.cn/ 点击:大家都在搜 点击:微博热搜榜…
如果你还想从头学起Selenium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1680176.html 其次,如果你不懂前端基础知识,需要自己去补充哦,博主暂时没有总结(虽然我也会,所以我学selenium就不用复习前端了哈哈哈...) 注意,目前的实战都是流水账式写的,后面才会结合框架+PO模式 目的是为了掌握所学的Selenium基础 实战题目 访问:https://www.toutiao.com/ 获取到下图所有黑框里的内容…
如果你还想从头学起Selenium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1680176.html 其次,如果你不懂前端基础知识,需要自己去补充哦,博主暂时没有总结(虽然我也会,所以我学selenium就不用复习前端了哈哈哈...) 注意,目前的实战都是流水账式写的,后面才会结合框架+PO模式 目的是为了掌握所学的Selenium基础 实战题目 1.访问:http://www.51job.com 2.输入搜索关键词 "pyth…
如果你还想从头学起Selenium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1680176.html 其次,如果你不懂前端基础知识,需要自己去补充哦,博主暂时没有总结(虽然我也会,所以我学selenium就不用复习前端了哈哈哈...) 注意,目前的实战都是流水账式写的,后面才会结合框架+PO模式 目的是为了掌握所学的Selenium基础 实战题目 登录 http://www.51job.com 点击高级搜索 输入搜索关键词 py…
如果你还想从头学起Selenium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1680176.html 其次,如果你不懂前端基础知识,需要自己去补充哦,博主暂时没有总结(虽然我也会,所以我学selenium就不用复习前端了哈哈哈...) 注意,目前的实战都是流水账式写的,后面才会结合框架+PO模式 目的是为了掌握所学的Selenium基础 实战题目 打开 12306 网站 https://kyfw.12306.cn/otn/lef…
如果你还想从头学起Selenium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1680176.html 其次,如果你不懂前端基础知识,需要自己去补充哦,博主暂时没有总结(虽然我也会,所以我学selenium就不用复习前端了哈哈哈...) 注意,目前的实战都是流水账式写的,后面才会结合框架+PO模式 目的是为了掌握所学的Selenium基础 实战题目 访问: https://www.vmall.com/ 获取一级菜单下包含哪些二级菜…
对偶的概念 https://blog.csdn.net/qq_34531825/article/details/52872819?locationNum=7&fps=1 拉格朗日乘子法.KKT条件 https://blog.csdn.net/mr_kktian/article/details/53750424 一.什么是SVM? SVM的英文全称是Support Vector Machines,我们叫它支持向量机.支持向量机是我们用于分类的一种算法.让我们以一个小故事的形式,开启我们的SVM之旅…
http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样…