自然梯度(Natural Gradient)】的更多相关文章

自然梯度(Natural Gradient)…
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课程例如Standford Andrew Ng老师在Coursera的教程以及UFLDL Tutorial,经典书籍例如<统计学习方法>等,同时也参考了大量网上的相关资料(在后面列出).    前言 机器学习中的大部分问题都是优化问题,而绝大部分优化问题都可以使用梯度下降法处理,那么搞懂什么是梯度,…
机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Linear Regression),首先给出一个关于房屋的经典例子, 面积(feet2) 房间个数 价格(1000$) 2104 3 400 1600 3 330 2400 3 369 1416 2 232 3000 4 540 ... ... .. 上表中面积和房间个数是输入参数,价格是所要输出的解.面…
1. 什么是梯度下降法?   梯度下降法(Gradient Decent)是一种常用的最优化方法,是求解无约束问题最古老也是最常用的方法之一.也被称之为最速下降法.梯度下降法在机器学习中十分常见,多用于求解参数的局部最小值问题. 2. 梯度下降法的原理 引用维基百科中的一张图 简单来说,梯度下降法就是利用了函数沿梯度方向下降最快的原理来求解极小值,当然也可以沿梯度上升方向求解极大值.具体的原理就不赘述了,可以参考Gradient Decent 的维基百科 梯度下降法. 3. 梯度下降法的求解步骤…
在前面讲到的DQN系列强化学习算法中,我们主要对价值函数进行了近似表示,基于价值来学习.这种Value Based强化学习方法在很多领域都得到比较好的应用,但是Value Based强化学习方法也有很多局限性,因此在另一些场景下我们需要其他的方法,比如本篇讨论的策略梯度(Policy Gradient),它是Policy Based强化学习方法,基于策略来学习. 本文参考了Sutton的强化学习书第13章和策略梯度的论文. 1. Value Based强化学习方法的不足 DQN系列强化学习算法主…
梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢. 中文名 梯度下降 外文名 steepest descent (gradient descent) 用于 求解非线性方程组 类型 最优化算法 目录 1 简介 2 求解过程 3 例子 4 缺点 简介 梯度下降法(gradient de…
在求解算法的模型函数时,常用到梯度下降(Gradient Descent)和最小二乘法,下面讨论梯度下降的线性模型(linear model). 1.问题引入 给定一组训练集合(training set)yi,i = 1,2,...,m,引入学习算法参数(parameters of learning algorithm)θ1,θ2,.....,θn,构造假设函数(hypothesis function)h(x)如下: 定义x0 = 1,则假设函数h(x)也可以记为以下形式: 这里xi(i = 1…
梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向,对应J增大的方向.对于蓝点,斜率为负,西塔减少时J增加,西塔增加时J减少,我们想让J减小,对应导数的负方向,因此前面需要加上负号. (伊塔对应步长)-------(1) 用当前点的西塔加上(1)式,得到新的西塔.因为导数是负值,前面又有负号,所以整个是正值,加上一个正值对应西塔在增大. 多维函数中,…
一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainSet,{(1,1),(2,2),(3,3)}通过手动寻找来找到最优解,由图可见当θ1取1时,与y(i)完全重合,J(θ1) = 0 下面是θ1的取值与对应的J(θ1)变化情况 由此可见,最优解即为0,现在来看通过梯度下降…
1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainSet,{(1,1),(2,2),(3,3)}通过手动寻找来找到最优解,由图可见当θ1取1时,与y(i)完全重合,J(θ1) = 0 下面是θ1的取值与对应的J(θ1)变化情况 由此可见,最优解即为0,现在来看通过梯度下降法来自动找到最优解,对于上述待优化问题,下图给出其三维图像,可见要找到最优解,就…
首先,我们继续上一篇文章中的例子,在这里我们增加一个特征,也即卧室数量,如下表格所示: 因为在上一篇中引入了一些符号,所以这里再次补充说明一下: x‘s:在这里是一个二维的向量,例如:x1(i)第i间房子的大小(Living area),x2(i)表示的是第i间房子的卧室数量(bedrooms). 在我们设计算法的时候,选取哪些特征这个问题往往是取决于我们个人的,只要能对算法有利,尽量选取. 对于假设函数,这里我们用一个线性方程(在后面我们会说到运用更复杂的假设函数):hΘ(x) = Θ0+Θ1…
梯度下降法作为一种反向传播算法最早在上世纪由geoffrey hinton等人提出并被广泛接受.最早GD由很多研究团队各自发表,可他们大多无人问津,而hinton做的研究完整表述了GD方法,同时hinton为自己的研究多次走动人际关系使得其论文出现在了当时的<nature>上,从此GD开始得到业界的关注.这为后面各种改进版GD的出现与21世纪深度学习的大爆发奠定了最重要的基础. PART1:original版的梯度下降法 首先已经有了 对weights和bias初始化过的神经网络计算图,也有一…
1.用梯度下降算法来训练或者学习训练集上的参数w和b,如下所示,第一行是logistic回归算法,第二行是成本函数J,它被定义为1/m的损失函数之和,损失函数可以衡量你的算法的效果,每一个训练样例都输出y,把它和基本真值标签y进行比较 右边展示了完整的公式,成本函数衡量了参数w和b在训练集上的效果.要找到合适的w和b,就很自然的想到,使得成本函数J(w,b)尽可能小的w和b 2.接下来看看梯度下降算法,下图中的横轴表示空间参数w和b,在实践中,w可以是更高维的,但是为了绘图的方便,我们让w是一个…
最陡下降法(steepest descent method)又称梯度下降法(英语:Gradient descent)是一个一阶最优化算法. 函数值下降最快的方向是什么?沿负梯度方向  d=−gk…
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是stanford的machine learning公开课,在verycd可下载,可惜没有翻译.不过还是可以看.另外一个是prml-pattern recogni…
本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是stanford的machine learning公开课,在verycd可下载,可惜没有翻译.不过还是可以看.另外一个是prml-pattern recognition a…
1.我们之前已经定义了代价函数J,可以将代价函数J最小化的方法,梯度下降是最常用的算法,它不仅仅用在线性回归上,还被应用在机器学习的众多领域中,在后续的课程中,我们将使用梯度下降算法最小化其他函数,而不仅仅是最小化线性回归的代价函数J.本节课中,主要讲用梯度下降的算法来最小化任意的函数J,下图是我们的问题: (1)梯度下降的思路: 给定θ0和θ1的初始值,首先将θ0和θ1初始化为0,在梯度下降中我们要做的是不停的改变θ0和θ1,来使得J(θ0,θ1)变小,直到我们找到J的值的最小值或者局部最小值…
在此记录使用matlab作梯度下降法(GD)求函数极值的一个例子: 问题设定: 1. 我们有一个$n$个数据点,每个数据点是一个$d$维的向量,向量组成一个data矩阵$\mathbf{X}\in \mathbb{R}^{n\times d}$,这是我们的输入特征矩阵. 2. 我们有一个响应的响应向量$\mathbf{y}\in \mathbb{R}^n$. 3. 我们将使用线性模型来fit上述数据.因此我们将优化问题形式化成如下形式:$$\arg\min_{\mathbf{w}}f(\math…
概述   梯度下降法(Gradient Descent)是一个算法,但不是像多元线性回归那样是一个具体做回归任务的算法,而是一个非常通用的优化算法来帮助一些机器学习算法求解出最优解的,所谓的通用就是很多机器学习算法都是用它,甚至深度学习也是用它来求解最优解.所有优化算法的目的都是期望以最快的速度把模型参数θ求解出来,梯度下降法就是一种经典常用的优化算法. 梯度下降法的思想   思想就类比于生活中的一些事情,比如你去询问你的一个朋友工资多少,他不会告诉你,但是他会让你去猜,然后告诉你猜的结果.你每…
一.前言 之前我们讨论的所有问题都是先学习action value,再根据action value 来选择action(无论是根据greedy policy选择使得action value 最大的action,还是根据ε-greedy policy以1-ε的概率选择使得action value 最大的action,action 的选择都离不开action value 的计算).即没有action value的估计值就无法进行action选择,也就没有Policy,这类方法被称为 value-ba…
http://www.cnblogs.com/joneswood/archive/2012/03/04/2379615.html 1.      什么是Treelink Treelink是阿里集团内部的叫法,其学术上的名称是GBDT(Gradient Boosting Decision Tree,梯度提升决策树).GBDT是“模型组合+决策树”相关算法的两个基本形式中的一个,另外一个是随机森林(Random Forest),相较于GBDT要简单一些. 1.1    决策树 应用最广的分类算法之一…
概述 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案.它在被提出之初就和SVM一起被认为是泛化能力较强的算法.GBDT中的树是回归树(不是分类树),GBDT用来做回归预测,调整后也可以用于分类. 集成学习==>提升方法族==>梯度提升方法==>以决策树作为基学习器的梯度提升方法 集成学习 集成学习…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 本来上一章的结尾提到,准备写写线性分类的问题,文章都已经写得差不多了,但是突然听说最近Team准备做一套分布式的分类器,可能会使用Random Forest来做,下了几篇论文看了看,简单的random forest还比较容易弄懂,复杂一点的还会与boosting等算法结合(参…
引自http://blog.csdn.net/xianlingmao/article/details/7712217 Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting 这些术语,我经常搞混淆,现在把它们放在一起,以示区别.(部分文字来自网络,由于是之前记的笔记,忘记来源了,特此向作者抱歉) Bootstraping: 名字来自成语“pull up by your own…
回归(Regression) 在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归,等等. 用一个很简单的例子来说明回归,这个例子来自很多的地方,比如说weka.大概就是,做一个房屋价值的评估系统,一个房屋的价值来自很多地方,比如说面积.房间的数量(几室几厅).地段.朝向等等,这些影响房屋价值的变量被称为特征(feature),fe…
一.CART分类与回归树 资料转载: http://dataunion.org/5771.html        Classification And Regression Tree(CART)是决策树的一种,并且是非常重要的决策树,属于Top Ten Machine Learning Algorithm.顾名思义,CART算法既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree).模型树(Model Tree),两者在建树的过程稍…
一.梯度检测: 对于函数而言通常有两种计算梯度的方式: 1.数值梯度 (numberical gradient) 2.解析梯度 (analytic gradient ) 数值梯度计算通常为: 更为常见的是: h是一个很小的数,在实际当中通常为1e-5 假设数值梯度为ƒ’a 解析梯度为ƒ’n ,则数值梯度和解析梯度的误差relative error: relative error >1e-2 通常情况梯度是错误的 1e-4 < relative error < 1e-2 并不是很好 rel…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 本来上一章的结尾提到,准备写写线性分类的问题,文章都已经写得差不多了,但是突然听说最近Team准备做一套分布式的分类器,可能会使用Random Forest来做,下了几篇论文看了看,简单的random forest还比较容易弄懂,复杂一点的还会与boosting等算法结合(参…
之前所学习的论文中求解稀疏解的时候一般采用的都是最小二乘方法进行计算,为了降低计算复杂度和减少内存,这篇论文梯度追踪,属于贪婪算法中一种.主要为三种:梯度(gradient).共轭梯度(conjugate gradient).近似共轭梯度(an approximation to the conjugate gradient),看师兄之前做压缩感知的更新点就是使用近似共轭梯度方法代替了StOMP中的最小二乘的步骤. 首先说明一下论文中的符号表示: Γn表示第n次迭代过程中所选择的原子的索引 ΦΓn…
Boosting方法: Boosting这其实思想相当的简单,大概是,对一份数据,建立M个模型(比如分类),一般这种模型比较简单,称为弱分类器(weak learner)每次分类都将上一次分错的数据权重提高一点再进行分类,这样最终得到的分类器在测试数据与训练数据上都可以得到比较好的成绩. 上图(图片来自prml p660)就是一个Boosting的过程,绿色的线表示目前取得的模型(模型是由前m次得到的模型合并得到的),虚线表示当前这次模型.每次分类的时候,会更关注分错的数据,上图中,红色和蓝色的…