Miller_Rabin 素数测试】的更多相关文章

Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the…
Senior PanⅡ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others) Problem Description Senior Pan had just failed in his math exam, and he can only prepare to make up for it. So he began a daily task with Master Dong, D…
费马定理的逆定理几乎可以用来判断一个数是否为素数,但是有一些数是判断不出来的,因此,Miller_Rabin测试方法对费马的测试过程做了改进,克服其存在的问题. 推理过程如下(摘自维基百科): 摘自另一篇博文(手动滑稽): 原理明白了,就直接上代码了(KuangBin大神的板子): 代码思路是, Miller_Rabin()函数随机选取 s 个a,a用做“基底” check() 函数是用来判断x是否等于1,也就是判断a是否是n的凭证. Mul_mod()函数是 快速乘 ,求 a^t % n 之后…
引语:在数论中,对于素数的研究一直就很多,素数测试的方法也是非常多,如埃式筛法,6N±1法,或者直接暴力判(试除法).但是如果要判断比较大的数是否为素数,那么传统的试除法和筛法都不再适用.所以我们需要学习Miller_Rabin算法. 知识准备 + 算法推导: 1.威尔逊定理:若p是素数,则 (p-1) !≡ -1(mod p). 2.有趣的是,威尔逊定理的逆命题也是正确的:设n是正整数且 n ≥ 2 ,若 (n-1) !≡ -1(mod n),则n 是素数. 很多朋友可能在学习的时候会碰到威尔…
#include<iostream> #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; long long mul(long long a,long long n,long long mo){ ; while (n){ ) ans=(ans+a)%mo; a=(a+a)%mo; n/=; } return ans;…
POJ1811 给一个大数,判断是否是素数,如果不是素数,打印出它的最小质因数 随机素数测试(Miller_Rabin算法) 求整数素因子(Pollard_rho算法) 科技题 #include<cstdlib> #include<cstdio> ; ; int tot; long long n; long long factor[maxn]; long long muti_mod(long long a,long long b,long long c) { //(a*b) mod…
板题 Miiler-Robin素数测试 目前已知分解质因数以及检测质数确定性方法就只能\(sqrt{n}\)试除 但是我们可以基于大量测试的随机算法而有大把握说明一个数是质数 Miler-Robin素数测试基于以下两个原理: 费马小定理 即我们耳熟能详的 对于质数\(p\) \[a^{p - 1} \equiv 1 \pmod p\] 二次探测原理 对于质数\(p\),如果存在\(x\)满足 \[x^2 \equiv 1 \pmod p\] 那么\(x\)只能是\(1\)或者\(p - 1\)…
题目链接:http://poj.org/problem?id=1811 题目解析:2<=n<2^54,如果n是素数直接输出,否则求N的最小质因数. 求大整数最小质因数的算法没看懂,不打算看了,直接贴代码,以后当模版用. 数据比较大,只能先用Miller_Rabin算法进行素数判断. 在用Pollard_rho分解因子.   #include <iostream> #include <stdio.h> #include <string.h> #include…
Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 27129   Accepted: 6713 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the…
//**************************************************************** // Miller_Rabin 算法进行素数测试 //速度快,而且可以判断 <2^63的数 //**************************************************************** ;//随机算法判定次数,S越大,判错概率越小 LL mult_mod(LL a,LL b,LL mod) //(a*b)%c a,b,c<…