(一) 为什么有人想要替换operator new 和 operator delete呢?三个常见的理由: (1)用来检測运用上的错误. (2)为了强化效果. (3)为了收集使用上的统计数据. (二) 以下是个高速发展得出的初阶段global operator new.促进并协助检測"overruns"或"underruns". static const int signature = 0xDEADBEEF; typedef unsigned char Byte;…
有许多理由需要写个自定的new 和delete ,包括改善效能.对heap 运用错误进行调试.收集heap 使用信息.…
1.有时候,我们替换掉编译器提供的new或者delete.首先思考,为什么想要替换?下面是三个常见理由: a.用来检测运用上的错误,超额分配一些内存,再额外的空间放置一些内存: b.为了强化效能,编译器提供的new/delete是通用的,通用就意味着冗余和效率低下,为什么?这个很好理解,因为他要支持很多情况下,也必须考虑很多情况.我们重写new/delete,也就是说,对于特定情况,给出特定的实现. c.为了收集使用上的统计数据.…
宁可拿non-member non-friend函数替换member函数.这样做可以增加封装性.包裹弹性(packaging flexibility)和机能扩充性.…
class GamePlayer{private: static const int NumTurns = 5; int scores[NumTurns]; ...}; 万一你的编译器(错误地)不允许“static整数型class常量“完成”in class初值设定“,可改用所谓的”the enumhack" 补偿做法.其理论基础是:“一个属于枚举类型(enumerated type)的数值可权充ints被使用”,于是GamePlayer可定义如下: class GamePlayer{priva…
换一种说法就是宁可以编译器替换预处理器 举例 #define ASPECT_RATIO 1.653 记号ASPECT_RATIO也许从未被编译器看见:也许在编译起开始处理源码前它就被预处理器移走了,于是它并没有进入符号表,当出现编译错误的时候会提示1.653,但是不会提示ASPECT_RATIO. 解决办法就是用一个常量替换宏(#define): const double AspectRatio = 1.653; 常量替换宏的两种特殊情况 1. 常量指针 常量定义通常被放在头文件内(以便被不同的…
(这里的验证结果是针对返回值优化的,其实和条款22本身所说的,考虑以操作符复合形式(op=)取代其独身形式(op),关系不大.书生注) 在[More Effective C++]条款22的最后,在返回值的返回方式上,大师Meyers推荐使用表达式[returnT(lhs)+=rhs;]这种使用匿名临时变量的方式,理由是“自古以来未具名对象总是比具名对象更容易被消除”,这种写法将更好地帮助编译器实现返回值优化(ReturnValue Optimization,简写RVO). 针对上述说法,我在两款…
More Effective C++ 条款0,1 条款0 关于编译器 不同的编译器支持C++的特性能力不同.有些编译器不支持bool类型,此时可用 enum bool{false, true};枚举类型来模拟bool类型.这允许参数类型为int和bool的函数重载,但是这样做的缺陷是,对于内置的比较运算符,其仍返回int类型. f(int);f(bool); f(a < b); // 会调用f(int),但其实用户期望调用f(bool). 但是一旦改用支持bool类型的编译器,情况可能会发生改变…
尽量少做转型动作 尽量少做转型动作有什么目的?非常明显无非就是提高程序的稳定性.提高程序的运行效率. 那么.有哪些转型方式?每种方式都有什么弱点? 这是我们本节学习的重点. C++有四种转型: const_cast<T>(expression) dynamic_cast<T>(expression) reinterpret_cast<T>(expression) static_cast<T>(expression) 每种转型的作用例如以下: 1.const_…
1. 自定义new和delete的三个常见原因 我们先回顾一下基本原理.为什么人们一开始就想去替换编译器提供的operator new和operator delete版本?有三个最常见的原因: 为了检测内存使用错误.不能成功delete new出来的内存会造成内存泄漏.在new出来的内存上使用多于一次的delete会产生未定义行为.如果operator new持有一份内存分配的列表,并且operator delete从列表中移除地址,那么就很容易侦测出这种使用错误.类似的,不同种类的编程错误能够…
1.在资源管理类中提供对原始资源的访问     前几个条款很棒,它们是对抗资源泄露的壁垒,但很多APIs直接指向 资源,这个时候,我们需要直接访问原始资源.     这里,有两种方法解决上述问题,我们可将RAII对象转换为原始资源.通过 显式转换与隐式转换.     通常,tr1:: shared_ptr 和 auto_ptr 都提供一个get成员函数,用来执行显式转换,也就是返回智能指针内部的原始指针的复件.因为它也重载了指针取值操作符* –>.当然也可以通过隐式转换为底部原始指针.     …
当你写一个placement operator new ,请确定也写出了对应的placement operator delete.如果没有这样做,你的程序可能会发生隐微而时断时续的内存泄漏. 当你声明placement new 和 placement delete,请确定不要(非故意)地遮掩了它们的正常版本.…
operator new 应该内含一个无穷循环,并在其中尝试分配内存,如果它无法满足内存需求,就该调用new-handler.它也应该有能力处理0 bytes 申请.Class专属版本则还应该处理“比正确大小更大的(错误)申请”. operator delete 应该在收到null指针时不做任何事.Class 专属版本则还应该处理“比正确大小更大的(错误)申请”.…
如果你在new表达式中使用[],必须在相应的delete表达式中也使用[].如果你在new表达式中不使用[],一定不要在相应的delete表达式中使用[].…
几种最常见的这么做的理由:     1.用来检测运行上的错误:可以在分配的内存空间的起始以及结束分别放置单独的签名     2.为了强化性能     3.为了收集使用上的统计数据 按照第一点就可以举一个例子: static const int signature = 0XDEADBEEF; typedef using char Byte; void operator new(std::size_t size) throw(std::bad_alloc) { using namespace std…
内存管理 1)正确得到: 正确调用内存分配和释放程序; 2)有效使用: 写特定版本的内存分配和释放程序; C中用mallco分配的内存没有用free返回, 就会产生内存泄漏, C++中则是new和delete; new和delete是隐式地调用构造和析构函数的, 而且可以在类内和类外自定义new和delete操作符, 这样带来了复杂性; 条款5 对应的new和delete要采用相同的形式 1 2 3 string *stringArray =  new  string[100]; //... d…
条款10 写了operator new就要同时写operator delete 写operator new和operator delete是为了提高效率; default的operator new和operator delete具有通用性, 也可以在特定情况下被重写以改善性能; 特别在需要动态分配大量的很小的对象的应用程序中; 1 2 3 4 5 6 7 class  AirplaneRep { ... };  // 表示一个飞机对象 class  Airplane { public : ...…
Item 50中解释了在什么情况下你可能想实现自己版本的operator new和operator delete,但是没有解释当你实现的时候需要遵守的约定.遵守这些规则并不是很困难,但是它们其中有一些并不直观,所以知道这些规则是什么很重要. 1. 定义operator new的约定 1.1 约定列举 我们以operator new开始.实现一个一致的operator new需要有正确的返回值,在没有足够内存的时候调用new-handling函数(见Item 49),并且做好准备处理没有内存可分配…
1.别让异常逃离析构函数的原因 <Effective C++>第三版中条款08建议不要在析构函数中抛出异常,原因是C++异常机制不能同时处理两个或两个以上的异常.多个异常同时存在的情况下,程序若不结束,会导致不明确行为.如下代码: class Widget{ public: ~Widget(){...} //假设这个可能吐出一个异常 }; void dosomething(){ vector<Widget> v; } //v在这里被自动销毁 函数dosomething运行结束后,最…
"自我赋值"发生在对象被赋值给自己时: class Widget { ... }; Widget w; ... w = w; // 赋值给自己 a[i] = a[j]; // 潜在的自我赋值 *px = *py; // 潜在的自我赋值 class Base { ... }; class Derived: public Base { ... }; void doSomething(const Base& rb, Derived* pd); // rb和*pd有可能其实是同一对象…
1.潜在的自我赋值     a[i] = a[j];     *px = *py; 当两个对象来自同一个继承体系时,他们甚至不需要声明为相同类型就可能造成别名. 现在担心的问题是:假如指向同一个对象,当其中一个对象被删,另一个也被删,这会造成不想要的结果. 该怎么办? 比如:   widget& widget:: operator+ (const widget& rhs) {    delete pd;    pd = new bitmap(*rhs.pb);    return *thi…
避免返回handles指向对象内部成分 本节作者讲述的知识核心是对于一个类来说,应该避免类返回自己内部的私有数据. 例如以下: class Point{ public: Point(int x, int y); -- void setX(int newVal); void setY(int newVal); -- }; struct RectData{ Point ulhc;//upper left-hand corner point lrhc;//lower right-hand corner…
避免返回handles(包括reference.指针.迭代器)指向对象内部.遵守这个条款可增加封装性,帮助const成员函数的行为像个const,并将发生“虚吊号码牌”(dangling handles)的可能性降至最低.…
绝不要返回pointer或reference指向一个local stack对象,或返回reference指向一个heap-allocated对象,或返回pointer或reference指向一个local static对象而有可能同时需要多个这样的对象.条款4已经为“在单线程环境中合理返回reference指向一个local static对象”提供了一份设计实例.…
Class的设计就是type的设计.在定义一个新type之前,请确定你已经考虑过本条款覆盖的所有讨论主题. 新type的对象应该如何被创建和销毁? 对象的初始化和对象的赋值该有什么样的区别? 新type的对象如果被passed by value(以值传递),意味着什么? 什么是新type的“合法值”? 你的新type需要配合某个继承图系(inheritance graph)吗? 你的新type需要什么样的转换? 什么样的操作符和函数对此新type而言是合理的? 什么样的标准函数应该驳回? 谁该取…
好的接口很容易被正确使用,不容易被误用.你应该在你IDE所有接口中努力达成这些性质. “促进正确使用”的办法包括接口的一致性,以及与内置类型的行为兼容. “阻止误用"的办法包括建立新类型.限制类型上的操作,束缚对象值,以及消除客户的资源管理责任. tri::shared_ptr支持定制型删除器(custom deleter).这可防范DLL问题,可被用来自动解除互斥锁(mutexes;见条款14)等等.…
条款27:尽量少做转型动作 单一对象可能拥有一个以上的地址!…
本节条款的题目是运用成员模板接受全部兼容类型 作者阐述自己的观点是通过智能指针的样例. 在学习本节条款之前我们要先明确关于隐式转化的问题 例如以下代码: #include<iostream> using namespace std; class A { public: explicit A(int i):a(i){}; A(const A&obj):a(obj.a) { } private: int a; }; int main() { int value =0; A a = valu…
在operator=中处理"自我赋值" 什么是自我赋值,非常明显. 就是自己的值赋值给了自己.以下的代码就是自我赋值: class Widget { public: Widget& operator=(const Widget& rhs) { delete p; p=new int(ths.p); return *this; } int *p; }; Widget w1,w2; w1=w2; w1=w1;//自我赋值. 如上代码,自我赋值的时候会出现删除自身数据的操作,…
我从本条款中学到了下面内容: 1.private继承不同于另外两种继承,派生类对象不能隐式转换为基类对象. 例如以下代码: class Bird//鸟 { }; class ostrich:private Bird//鸵鸟 { }; int main() { Bird *b = new ostrich();//编译不通过,基类不能转换为派生类 } 编译器明白指出基类是不可訪问的.所以转换失败. private继承在基类和派生类之间已经没有所谓的继承关系,之所以有它的存在纯粹是为应用层面服务,即为…