题目链接:http://poj.org/problem?id=2533 Time Limit: 2000MS Memory Limit: 65536K Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ...,…
解法 1. 假设在目标数组 array[] 的前 i 个元素中, 最长递增子序列的长度为 LIS[i] 那么状态转移方程为 LIS[i] = max(1, LIS[k]+1) array[i+1] > array[k], for any k <= i 按照这个动规的思路, 每次求 LIS[i] 是都要遍历 LIS[0] ~ LIS[i] 时间复杂度为 o(n^2) 2. (1) 是一个比较一般性的解法. 考虑下面一个例子 目标序列为 1, -1, 2, -3, 4, -5, 6, 当 i =…
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1,ai2,...,aim}为原序列的一个子序列.若在子序列中,当下标ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列.最长递增子序列问题,就是在一个给定的原序列中,求得最长递增子序列长度.…
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai 2,...aim},其中下标 i1.i2…im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1, ai 2,...aim}为原序列的一个子序列.若在子序列中,当下标 ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列.最长递增子…
最长递增子序列(Longest Increasing Subsequence) ,我们简记为 LIS. 题:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列1,-1,2,-3,4,-5,6,-7中,最长递增子序列长度为4,序列为1,2,4,6.  解法一:快速排序+LCS 刚开始做这道题的时候,由于之前做过几道LCS的题,于是最先想到的是快速排序+LCS的方法.这种方法解决了当时只计算单个case的问题,但是后来面对计算多个    case的问题的时候,第一次遇到Memory Lim…
1.题目描述     给定数组arr,返回arr的最长递增子序列. 2.举例     arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答     本期主要从动态规划和二分法两个方向来求解最长递增子序列问题. 3.1 动态规划求解最长递增子序列     先介绍时间复杂度为O(N^2^)的方法,具体过程如下: 生成数组dp,dp[i]表示在以arr[i]这个数结尾的情况下,arr[0-i]中的最大递增子序列长度. 对第一个数arr[0]来说,令d…
题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动态规划:之前我们使用动态规划去解决一般是创建一维数组或者二维数组来构建出dp表,利用之前的历史上dp表中的值进行相关的处理求解出这个过程中的几个最大值,最小值,然后相加减来得出dp表的当前元素的值,所以我们会想,先创建一个一维数组,因为数组中选择的元素的范围在进行变化,所以dp表表示的值为截取到当前…
最长递增子序列(LIS)   本博文转自作者:Yx.Ac   文章来源:勇幸|Thinking (http://www.ahathinking.com)   --- 最长递增子序列又叫做最长上升子序列:子序列,正如LCS一样,元素不一定要求连续.本节讨论实现三种常见方法,主要是练手. 题:求一个一维数组arr[i]中的最长递增子序列的长度,如在序列1,-1,2,-3,4,-5,6,-7中,最长递增子序列长度为4,可以是1,2,4,6,也可以是-1,2,4,6. 方法一:DP 像LCS一样,从后向…
问题:给定一组数 a0,a0,....,an-1. 求该序列的最长递增(递减)序列的长度. 最长递增子序列长度的求法有O(n^2)和O(nlogn)两种算法. 1.复杂度为O(n^2)的算法. 设L[i]表示以a[i]结尾的最长递增子序列的长度.则ans=max{L[1],...,L[n]};当i=1时,显然长度为1,即L[1]=1;L[i]的递归方程如下: L[i]=max{L[j]}+1  (j<i且a[j]<a[i]). 于是可以采用自底向上来计算L[2]...L[n]. #define…
题目描写叙述: 给定一个数组,删除最少的元素,保证剩下的元素是递增有序的. 分析: 题目的意思是删除最少的元素.保证剩下的元素是递增有序的,事实上换一种方式想,就是寻找最长的递增有序序列.解法有非常多种,这里考虑用动态规划实现. 开辟一个额外的一维数组dp[]用来记录以每一个元素为结尾的最长子序列的长度.当然.还须要一个哈希表,用来保存最长子序列的元素.dp[i]表示以数组A[i]为结尾的最长子序列的长度.则不难得到例如以下的公式: 然后通过回溯哈希表把须要删除的元素删除就可以. <span s…