本篇文章主要剖析BlockManager相关的类以及总结Spark底层存储体系. 总述 先看 BlockManager相关类之间的关系如下: 我们从NettyRpcEnv 开始,做一下简单说明. NettyRpcEnv是Spark 的默认的RpcEnv实现,它提供了个Spark 集群各个节点的底层通信环境,可以参照文章 spark 源码分析之十二--Spark RPC剖析之Spark RPC总结 做深入了解. MemoryManager 主要负责Spark内存管理,可以参照 spark 源码分析…
上篇spark 源码分析之十五 -- Spark内存管理剖析 讲解了Spark的内存管理机制,主要是MemoryManager的内容.跟Spark的内存管理机制最密切相关的就是内存存储,本篇文章主要介绍Spark内存存储. 总述 跟内存存储的相关类的关系如下: MemoryStore是负责内存存储的类,其依赖于BlockManager.SerializerManager.BlockInfoManager.MemoryManager. BlockManager是BlockEvictionHandl…
在spark 源码分析之五 -- Spark内置RPC机制剖析之一创建NettyRpcEnv中,剖析了NettyRpcEnv的创建过程. Dispatcher.NettyStreamManager.TransportContext.TransportClientFactory.TransportServer.Outbox.Inbox等等基础的知识都已经在前面剖析过了. 可以参照如下文章做进一步了解. p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12…
本篇文章主要剖析Spark的内存管理体系. 在上篇文章 spark 源码分析之十四 -- broadcast 是如何实现的?中对存储相关的内容没有做过多的剖析,下面计划先剖析Spark的内存机制,进而进入内存存储,最后再剖析磁盘存储.本篇文章主要剖析内存管理机制. 整体介绍 Spark内存管理相关类都在 spark core 模块的 org.apache.spark.memory 包下. 文档对这个包的解释和说明如下: This package implements Spark's memory…
上篇文章 spark 源码分析之十八 -- Spark存储体系剖析 重点剖析了 Spark的存储体系.从本篇文章开始,剖析Spark作业的调度和计算体系. 在说DAG之前,先简单说一下RDD. 对RDD的整体概括 文档说明如下: RDD全称Resilient Distributed Dataset,即分布式弹性数据集.它是Spark的基本抽象,代表不可变的可分区的可并行计算的数据集. RDD的特点: 1. 包含了一系列的分区 2. 在每一个split上执行函数计算 3. 依赖于其他的RDD 4.…
引言 上篇 spark 源码分析之十九 -- DAG的生成和Stage的划分 中,主要介绍了下图中的前两个阶段DAG的构建和Stage的划分. 本篇文章主要剖析,Stage是如何提交的. rdd的依赖关系构成了DAG,DAGScheduler根据shuffle依赖关系将DAG图划分为一个一个小的stage.具体可以看 spark 源码分析之十九 -- DAG的生成和Stage的划分 做进一步了解. 紧接上篇文章 上篇文章中,DAGScheduler的handleJobSubmitted方法我们只…
spark 源码分析之十--Spark RPC剖析之TransportResponseHandler.TransportRequestHandler和TransportChannelHandler剖析 TransportResponseHandler分析 先来看类说明: Handler that processes server responses, in response to requests issued from a [[TransportClient]]. It works by tr…
本文结合<Spring源码深度解析>来分析Spring 5.0.6版本的源代码.若有描述错误之处,欢迎指正. 目录 一.创建bean的实例 1. autowireConstructor 2 . instantiateBean 3 . 实例化策略 二.记录创建bean的ObjectFactory 三.属性注入 1. autowireByName 2. autowireByType 3. applyPropertyValues 四.初始化bean 1. 激活 Aware 方法 2. 处理器的应用…
这个模块简单,且无实际作用.一般实际项目中都有用数据库做持久化,用了数据库就无法用这个MemoryDB 模块了.原因在于ABP限制了UnitOfWork的类型只能有一个(前文以作介绍),一般用了数据库的必然要注入efUnitOfWork. 而注入了efUnitOfWork就不能在注入MemoryDbUnitOfWork了. MemoryDatabase:这是一个单例.ABP通过Dictionary<Type, object>+lock作为数据结构来实现内存数据库.其以entity的类型作为ke…
transition组件可以给任何元素和组件添加进入/离开过渡,但只能给单个组件实行过渡效果(多个元素可以用transition-group组件,下一节再讲),调用该内置组件时,可以传入如下特性: name         用于自动生成CSS过渡类名        例如:name:'fade'将自动拓展为.fade-enter,.fade-enter-active等    appear      是否在初始渲染时使用过渡         默认为false    css            是否…
本篇文章主要剖析broadcast 的实现机制. BroadcastManager初始化 BroadcastManager初始化方法源码如下: TorrentBroadcastFactory的继承关系如下: BroadcastFactory An interface for all the broadcast implementations in Spark (to allow multiple broadcast implementations). SparkContext uses a Br…
如果对OData不熟悉的话可参考OData的初步认识一文以获取OData的一些初步知识. API.Odata 模块唯一用处就是提供了一个泛型版本的ODataController,实现了Controller代码的常用. AbpODataEntityController<TEntity, TPrimaryKey>:使用ABP的repository和UOW完成实体的CRUD操作. AbpODataEntityController<TEntity>:主键为int类型的AbpODataEnt…
原文网址: http://www.cnblogs.com/csdev Networkcomms 是一款C# 语言编写的TCP/UDP通信框架  作者是英国人  以前是收费的 目前作者已经开源  许可是:Apache License v2 开源地址是:https://github.com/MarcFletcher/NetworkComms.Net 连接监听器基类 /// <summary> /// A base class that the listener of each connection…
如下,是 spark 源码分析系列的一些文章汇总,持续更新中...... Spark RPC spark 源码分析之五--Spark RPC剖析之创建NettyRpcEnv spark 源码分析之六--Spark RPC剖析之Dispatcher和Inbox.Outbox剖析 spark 源码分析之七--Spark RPC剖析之RpcEndPoint和RpcEndPointRef剖析 spark 源码分析之八--Spark RPC剖析之TransportContext和TransportClie…
问题的提出 本篇文章将回答如下问题: 1.  spark任务在执行的时候,其内存是如何管理的? 2. 堆内内存的寻址是如何设计的?是如何避免由于JVM的GC的存在引起的内存地址变化的?其内部的内存缓存池回收机制是如何设计的? 3. 堆外和堆内内存分别是通过什么来分配的?其数据的偏移量是如何计算的? 4. 消费者MemoryConsumer是什么? 5. 数据在内存页中是如何寻址的? 单个任务的内存管理是由 org.apache.spark.memory.TaskMemoryManager 来管理…
第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和OneToOneDependency四种依赖关系.如下图所示:org.apache.spark.Dependency有两个一级子类,分别是 ShuffleDependency 和 NarrowDependency.其中,NarrowDependency 是一个抽象类,它有三个实现类,分别是OneToO…
上篇文章 spark 源码分析之十六 -- Spark内存存储剖析 主要剖析了Spark 的内存存储.本篇文章主要剖析磁盘存储. 总述 磁盘存储相对比较简单,相关的类关系图如下: 我们先从依赖类 DiskBlockManager 剖析. DiskBlockManager 文档说明如下: Creates and maintains the logical mapping between logical blocks and physical on-disk locations. One block…
TransportClient类说明 先来看,官方文档给出的说明: Client for fetching consecutive chunks of a pre-negotiated stream. This API is intended to allow efficient transfer of a large amount of data, broken up into chunks with size ranging from hundreds of KB to a few MB. …
引言 在上两篇文章 spark 源码分析之十九 -- DAG的生成和Stage的划分 和 spark 源码分析之二十 -- Stage的提交 中剖析了Spark的DAG的生成,Stage的划分以及Stage转换为TaskSet后的提交. 如下图,我们在前两篇文章中剖析了DAG的构建,Stage的划分以及Stage转换为TaskSet后的提交,本篇文章主要剖析TaskSet被TaskScheduler提交之后的Task的整个执行流程,关于具体Task是如何执行的两种stage对应的Task的执行有…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3879151.html 在SparkContext创建过程中会调用createTaskScheduler函数来启动TaskScheduler任务调度器,本文就详细分析TaskScheduler的工作原理: TaskScheduler会根据部署方式而选择不同的SchedulerBackend来处理 下图展示了TaskScheduler.TaskSchedulerImpl.SchedulerBackend等…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3868718.html 本文主要分享一下如何构建Spark源码分析环境.以前主要使用eclipse来阅读源码的,但是针对用scala写的spark来说不是太方便.最近开始转向使用idea 首先http://www.jetbrains.com/idea/下载安装idea 选择File->Settings->Plugins->Install JetBrain plugin安装scala插件…
继上次的Spark-shell脚本源码分析,还剩下后面半段.由于上次涉及了不少shell的基本内容,因此就把trap和stty放在这篇来讲述. 上篇回顾:Spark源码分析之Spark Shell(上) function main() { if $cygwin; then # Workaround for issue involving JLine and Cygwin # (see http://sourceforge.net/p/jline/bugs/40/). # If you're us…
有了前面spark-shell的经验,看这两个脚本就容易多啦.前面总结的Spark-shell的分析可以参考: Spark源码分析之Spark Shell(上) Spark源码分析之Spark Shell(下) Spark-submit if [ -z "${SPARK_HOME}" ]; then export SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)" fi # disable…
原文地址:http://jerryshao.me/architecture/2013/04/30/Spark%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%E4%B9%8B-deploy%E6%A8%A1%E5%9D%97/ Background 在前文Spark源码分析之-scheduler模块中提到了Spark在资源管理和调度上采用了Hadoop YARN的方式:外层的资源管理器和应用内的任务调度器:并且分析了Spark应用内的任务调度模块.本文就Spark的外层资…
原文链接:Spark源码分析:多种部署方式之间的区别与联系(1) 从官方的文档我们可以知道,Spark的部署方式有很多种:local.Standalone.Mesos.YARN.....不同部署方式的后台处理进程是不一样的,但是如果我们从代码的角度来看,其实流程都差不多. 从代码中,我们可以得知其实Spark的部署方式其实比官方文档中介绍的还要多,这里我来列举一下: 1.local:这种方式是在本地启动一个线程来运行作业: 2.local[N]:也是本地模式,但是启动了N个线程: 3.local…
Spark源码分析 – SparkContext 中的例子, 只分析到sc.runJob 那么最终是怎么执行的? 通过DAGScheduler切分成Stage, 封装成taskset, 提交给TaskScheduler, 然后等待调度, 最终到Executor上执行 val sc = new SparkContext(--) val textFile = sc.textFile("README.md") textFile.filter(line => line.contains(…
http://jerryshao.me/categories.html#architecture-ref http://blog.csdn.net/pelick/article/details/17222873 如果想了解Spark的设计, 第一个足够 如果想梳理Spark的源码整体结构, 第二个也可以  ALL Spark源码分析 – SparkContext Spark源码分析 – SparkEnv  Spark 源码分析 -- task实际执行过程   DAGScheduler Spark…
参考详细探究Spark的shuffle实现, 写的很清楚, 当前设计的来龙去脉 Hadoop Hadoop的思路是, 在mapper端每次当memory buffer中的数据快满的时候, 先将memory中的数据, 按partition进行划分, 然后各自存成小文件, 这样当buffer不断的spill的时候, 就会产生大量的小文件 所以Hadoop后面直到reduce之前做的所有的事情其实就是不断的merge, 基于文件的多路并归排序, 在map端的将相同partition的merge到一起,…
参考, Spark源码分析之-Storage模块 对于storage, 为何Spark需要storage模块?为了cache RDD Spark的特点就是可以将RDD cache在memory或disk中,RDD是由partitions组成的,对应于block 所以storage模块,就是要实现RDD在memory和disk上的persistent功能 首先每个节点都有一个BlockManager, 其中有一个是Driver(master), 其余的都是slave master负责track所有…
Spark在设计上将DAGScheduler和TaskScheduler完全解耦合, 所以在资源管理和task调度上可以有更多的方案 现在支持, LocalSheduler, ClusterScheduler, MesosScheduler, YarnClusterScheduler 先分析ClusterScheduler, 即standalone的Spark集群上, 因为比较单纯不涉及其他的系统, 看看Spark的任务是如何被执行的   private var taskScheduler: T…