DAGScheduler stage 划分算法】的更多相关文章

DAGScheduler stage 划分算法 stage划分算法很重要,对于spark开发人员来说,必须对stage划分算法很清晰,知道自己编写的spark Application被划分成了几个job,每个job被划分成了几个stage,每个stage包括哪些代码,这样当发现哪个stage报错或者执行特别慢,才能针对对应代码排查问题和性能调优 stage 划分思想: 由submitStage() 和getMissingParentStage() 组成 会从触发Action操作的那个RDD开始往…
一.stage划分算法原理 1.图解 二.DAGScheduler源码分析 1. ###org.apache.spark/SparkContext.scala // 调用SparkContext,之前初始化时创建的dagScheduler的runJob()方法 dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal, resultHandler, localProperties.get) ###org.apac…
引言 对于Spark开发人员来说,了解stage的划分算法可以让你知道自己编写的spark application被划分为几个job,每个job被划分为几个stage,每个stage包括了你的哪些代码,只有知道了这些之后,碰到某个stage执行特别慢或者报错,你才能快速定位到对应的代码,对其进行性能优化和排错. stage划分原理与源码 接着上期内核源码(五)的最后,每个action操作最终会调用SparkContext初始化时创建的DAGSchedule的runJob方法创建一个job: 那么…
本課主題 Job Stage 划分算法解密 Task 最佳位置算法實現解密 引言 作业调度的划分算法以及 Task 的最佳位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这也是关系到整个作业有集群中该怎么运行:其次就是数据本地性,Spark 一舨的代码都是链式表达的,这就让一个任务什么时候划分成 Stage,在大数据世界要追求最大化的数据本地性,所有最大化的数据本地性就是在数据计算的时候,数据就在内存中.最后就是 Spark 的实现算法时候的略的怎么样.希望这篇文章能…
本课主题 Job Stage 划分算法解密 Task 最佳位置算法实现解密 引言 作业调度的划分算法以及 Task 的最佳计算位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这也是关系到整个作业有集群中该怎么运行:其次就是数据本地性,Spark 一般的代码都是链式表达的,这就让一个任务什么时候划分成 Stage,在大数据世界要追求最大化的数据本地性,所有最大化的数据本地性就是在数据计算的时候,数据就在内存中.希望这篇文章能为读者带出以下的启发: 了解 Stage 的具…
本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课程会涵盖Scala编程详解.Spark核心编程.Spark SQL和Spark Streaming.Spark内核以及源码剖析.性能调优.企业级案例实战等部分.完全从零起步,让学员可以一站式精通Spark企业级大数据开发,提升自己的职场竞争力,实现更好的升职或者跳槽,或者从j2ee等传统软件开发工程…
本节内容 · spark底层执行机制 · 细说RDD构建过程 · Job Stage的划分算法 · Task最佳计算位置算法 一.spark底层执行机制 对于Spark底层的运行原理,找到了一副很好的图,先贴上 客户端提交应用后,spark是如何执行的要有一个整体的概念,做到心中有数,先整体把握,才能更好的分模块开垦细节,废话不多说,先来看该图如何更好的理解. 1)提交前的联系 Worker向Master或则ResourceManager汇报自己有哪些资源(内存.CPU.磁盘空间.网络等),Ma…
Driver的任务提交过程 1.Driver程序的代码运行到action操作,触发了SparkContext的runJob方法.2.SparkContext调用DAGScheduler的runJob函数.3.DAGScheduler把Job划分stage,然后把stage转化为相应的Tasks,把Tasks交给TaskScheduler.4.通过TaskScheduler把Tasks添加到任务队列当中,交给SchedulerBackend进行资源分配和任务调度.5.调度器给Task分配执行Exe…
一个job的生命历程 dagScheduler.runJob //(1) --> submitJob ( eventProcessLoop.post(JobSubmitted,***) //(2) --> eventProcessLoop //(3) --> onReceive(event: DAGSchedulerEvent) //(4) --> doOnReceive(event: DAGSchedulerEvent) //(5) --> case JobSubmitte…
一.Spark集群基础概念 将DAG划分为多个stage阶段,遵循以下原则: 1.将尽可能多的窄依赖关系的RDD划为同一个stage阶段. 2.当遇到shuffle操作,就意味着上一个stage阶段结束,下一个stage阶段开始 关于RDD中的分区,在默认情况下(也就是未指明分区数的情况) 1.如果从HDFS中读取数据创建RDD,在默认情况下 二.spark架构原理 1.Spark架构原理 Driver 进程                    编写的Spark程序就在Driver上, 由Dr…