KL DivergenceKL( Kullback–Leibler) Divergence中文译作KL散度,从信息论角度来讲,这个指标就是信息增益(Information Gain)或相对熵(Relative Entropy),用于衡量一个分布相对于另一个分布的差异性,注意,这个指标不能用作距离衡量,因为该指标不具有对称性,即两个分布PP和QQ,DKL(P|Q)DKL(P|Q)与DKL(Q|P)DKL(Q|P)计算的值一般不相等,若用作距离度量,一般需要对公式加以修改,后文讲到. KL Dive…
Kullback–Leibler divergence KL散度 In probability theory and information theory, the Kullback–Leibler divergence[1][2][3] (also information divergence,information gain, relative entropy, or KLIC) is a non-symmetric measure of the difference between two…
1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类都是明确区分的,假设我们是开发一个二分类模型,那么对应于一个输入数据,我们将他标记为要么绝对是正,要么绝对是负.比如,我们输入的是一张图片,来判断这张图片是苹果还是梨子. 在训练过程中,我们可能输入了一张图片表示的是苹果,那么对于这张输入图片的真实概率分布为y=(苹果:1,梨子:0),但是我们的模型…
https://www.cnblogs.com/silent-stranger/p/7987708.html 1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类都是明确区分的,假设我们是开发一个二分类模型,那么对应于一个输入数据,我们将他标记为要么绝对是正,要么绝对是负.比如,我们输入的是一张图片,来判断这张图片是苹果还是梨子. 在训练过程中,我们…
Uplift Decision Tree With KL Divergence Intro Uplift model 我没找到一个合适的翻译,这方法主要应用是,探究用户在给予一定激励之后的表现,也就是在电商领域,比如我们给一部分用户发了一些优惠券,那么这些行为是否将"转化"用户呢?是否会起一些积极作用呢?Uplift Model是模拟增量操作对个人行为的影响的.(经济学的人研究) 而在决策树中,我们给一部分样本treatment,而不给另一部分样本treatment,这样相当于每个样本…
这个函数很重要: function KL = kldiv(varValue,pVect1,pVect2,varargin) %KLDIV Kullback-Leibler or Jensen-Shannon divergence between two distributions.% KLDIV(X,P1,P2) returns the Kullback-Leibler divergence between two% distributions specified over the M vari…
Kullback-Leibler divergence 形式: 性质: 非负 P=Q时,D[P||Q]=0 不对称性:D(P||Q)≠D(Q||P) 自信息:符合分布 P 的某一事件 x 出现,传达这条信息所需的最少信息长度为自信息,表达为 熵:从分布 P 中随机抽选一个事件,传达这条信息所需的最优平均信息长度为香农熵,表达为 交叉熵:用分布 P 的最佳信息传递方式来传达分布 Q 中随机抽选的一个事件,所需的平均信息长度为交叉熵,表达为 KL 散度:用分布 P 的最佳信息传递方式来传达分布 Q,…
转自:https://www.jianshu.com/p/43318a3dc715?from=timeline&isappinstalled=0 https://blog.csdn.net/ericcchen/article/details/72357411 https://www.cnblogs.com/smuxiaolei/p/7400923.html 实际含义包括数据和假设的概率模型之间的差距,也可以理解为损失. 当以2为底时表示的是,以当前形式标识信息损失了多少位. 1.数据的熵 当底数…
L lower是什么? L lower, 既然大于,那么多出来的这部分是什么?如下推导: 得出了KL的概念,同时也自然地引出了latent variable q.…
JDK5新增了一个Executors工厂类来产生线程池,有如下几个方法 A.public static ExecutorService newCachedThreadPool() B.public static ExecutorService newFixedThreadPool(int nThreads) C.public static ExecutorService newSingleThreadExecutor() 这些方法的返回值是ExecutorService对象 该对象表示一个线程池…
做图像处理,没有一定的知识储备是不可能的,但是一定要学会“借力打力”,搜集一些很实用的开源代码,你们看看是否需要~~ 场景识别: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling https://github.com/alexgkendall/caffe-segnet Tracking: Learning to Track: Online Multi…
在使用pycharm时,经常会需要多行代码同时缩进.左移,pycharm提供了快捷方式 1.pycharm使多行代码同时缩进 鼠标选中多行代码后,按下Tab键,一次缩进四个字符 2.pycharm使多行代码同时左移 鼠标选中多行代码后,同时按住shift+Tab键,一次左移四个字符 charm时,经常会需要多行代码同时缩进.左移,pycharm提供了快捷方式 1.pycharm使多行代码同时缩进 鼠标选中多行代码后,按下Tab键,一次缩进四个字符 2.pycharm使多行代码同时左移  鼠标选中…
在我们开发代码的时候,一般都喜欢进行一定程度的重构,以达到简化代码.关注点分离.提高代码可读性等等方面的考虑,本篇随笔介绍在VUE+Element 前端应用开发过程中,实现简化main.js处理代码,抽取过滤器.全局界面函数.组件注册等处理逻辑到不同的文件中做法. 1.main.js处理逻辑 我们知道Vue的前端应用,main.js函数里面承载的逻辑内容很多,往往涉及到一些常用过滤器函数.全局界面函数.组件注册等常规的处理过程,在我们应用越来愈大,引入的控件越来越多的时候,往往需要很多代码来实现…
Sorta Insightful Reviews Projects Archive Research About  In a world where everyone has opinions, one man...also has opinions Read-through: Wasserstein GAN Feb 22, 2017 I really, really like the Wasserstein GAN paper. I know it’s already gotten a lot…
最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写一写很多童鞋们w未必完全理解的最大似然估计的部分. 单纯从原理上来说,最大似然估计并不是一个非常难以理解的东西.最大似然估计不过就是评估模型好坏的方式,它是很多种不同评估方式中的一种.未来准备写一写最大似然估计与它的好朋友们,比如说贝叶斯估计 (Beyasian Estimation), 最大后验估计(Max…
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件概率分布等等. 比如前面在第九章尼采兄讲EM时,我们就计算了对数似然函数在隐变量后验分布下的期望.这些任务往往需要积分或求和操作. 但在很多情况下,计算这些东西往往不那么容易.因为首先,我们积分中涉及的分布可能有很复杂的形式,这样就无法直接得到解析解,而我们当然希望分布是类似指数族分布这样具有共轭分…
最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Kullback–Leibler divergence,也称为相对熵,信息增益,它是度量两个概率分布P与Q之间差异的一种不对称度量,可以看做是概率分布P到目标概率Q之间距离.一般情况下,P表示数据的真是分布,Q表示数据的理论分布,也可以理解为影响P分布的一种因素.计算公式为: DKL(P||Q) =ΣP…
熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择一个最佳的划分,使得熵下降最大:深度学习模型最后一层使用 softmax 激活函数后,我们也常使用交叉熵来计算两个分布的“距离”.KL散度和交叉熵很像,都可以衡量两个分布之间的差异,相互之间可以转化. 1. 如何量化信息? 信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化.信…
熵:H(p)=−∑xp(x)logp(x) 交叉熵:H(p,q)=−∑xp(x)logq(x) 相对熵:KL(p∥q)=−∑xp(x)logq(x)p(x) 相对熵(relative entropy)也叫 KL 散度(KL divergence): 用来度量两分布之间的不相似性(dissimilarity): 通过交叉熵的定义,连接三者: H(p,q)===−∑xp(x)logq(x)−∑xp(x)logp(x)−∑xp(x)logq(x)p(x)H(p)+KL(p∥q) 1. 简森不等式与 K…
原文地址Count Bayesie 这篇文章是博客Count Bayesie上的文章Kullback-Leibler Divergence Explained 的学习笔记,原文对 KL散度 的概念诠释得非常清晰易懂,建议阅读 相对熵,又称KL散度( Kullback–Leibler divergence),是描述两个概率分布P和Q差异的一种方法.它是非对称的,这意味着D(P||Q) ≠ D(Q||P). KL散度的计算 衡量近似分布带来的信息损失. KL散度的计算公式其实是熵计算公式的简单变形,…
KL散度(KL divergence) 全称:Kullback-Leibler Divergence. 用途:比较两个概率分布的接近程度.在统计应用中,我们经常需要用一个简单的,近似的概率分布 f * 来描述. 观察数据 D 或者另一个复杂的概率分布 f .这个时候,我们需要一个量来衡量我们选择的近似分布 f * 相比原分布 f 究竟损失了多少信息量,这就是KL散度起作用的地方. 熵(entropy) 想要考察信息量的损失,就要先确定一个描述信息量的量纲. 在信息论这门学科中,一个很重要的目标就…
目录 机器学习基础--信息论相关概念总结以及理解 1. 信息量(熵) 2. KL散度 3. 交叉熵 4. JS散度 机器学习基础--信息论相关概念总结以及理解 摘要: 熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)以及JS散度,在深度学习以及机器学习很多地方都用的到,尤其是对于目标函数和损失函数的定义.在逻辑回归问题中,目标函数就是用交叉熵定义的. 1. 信息量(熵) 信息论是应用数学的一个分支,主要研究…
在深度学习中,我们通常对模型进行抽样并计算与真实样本之间的损失,来估计模型分布与真实分布之间的差异.并且损失可以定义得很简单,比如二范数即可.但是对于已知参数的两个确定分布之间的差异,我们就要通过推导的方式来计算了. 下面对已知均值与协方差矩阵的两个多维高斯分布之间的KL散度进行推导.当然,因为便于分布之间的逼近,Wasserstein distance可能是衡量两个分布之间差异的更好方式,但这个有点难,以后再记录. 首先定义两个$n$维高斯分布如下: $\begin{aligned} &p(x…
转自:KL距离,Kullback-Leibler Divergence   KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy).它衡量的是相同事件空间里的两个概率分布的差异情况.其物理意义是:在相同事件空间里,概率分布P(x)的事件空间,若用概率分布Q(x)编码时,平均每个基本事件(符号)编码长度增加了多少比特.我们用D(P||Q)表示KL距离,计算公式如下: 注:当两个分布比较接近时…
回到随机变量传输问题,假设传输中我们不知道具体 分布情况(unknown),我们用一个已知的分布 ,来模拟它,那么在这种情况下如果我们利用 尽可能高效的编码,那么我们平均需要多少额外的信息量来描述x呢.这称为相对熵,或者kl divergence. 利用凸函数的不等式性质(也利用了离散求和推广到连续积分)可以证明 因此KL表征了两个分布之间的关系,a measure of dissimilariy of p and q表示两个分布不相同的程度 来自 <http://www.cnblogs.com…
自信息量I(x)=-log(p(x)),其他依次类推. 离散变量x的熵H(x)=E(I(x))=-$\sum\limits_{x}{p(x)lnp(x)}$ 连续变量x的微分熵H(x)=E(I(x))=-$\int{p(x)lnp(x)dx} $ 条件熵H(y|x)=-$\int\int{p(x,y)lnp(y|x)dydx}$ 两个变量X和 Y 的联合熵定义为: H(X,Y)=-$\int\int{p(x,y)lnp(x,y)dxdy}$ H(x,y)=H(y|x)+H(x) 若x,y独立,H…
上一讲说到,各个特征(各个分量)对分类来说,其重要性当然是不同的. 舍去不重要的分量,这就是降维. 聚类变换觉得:重要的分量就是能让变换后类内距离小的分量. 类内距离小,意味着抱团抱得紧. 可是,抱团抱得紧,真的就一定easy分类么? 如图1所看到的,依据聚类变换的原则,我们要留下方差小的分量,把方差大(波动大)的分量丢掉,所以两个椭圆都要向y轴投影,这样悲剧了,两个重叠在一起,根本分不开了.而还有一种情况却能够这么做,把方差大的分量丢掉,于是向x轴投影,非常顺利就能分开了.因此,聚类变换并非每…
K-L变换( Karhunen-Loeve Transform)是建立在统计特性基础上的一种变换,有的文献也称为霍特林(Hotelling)变换,因他在1933年最先给出将离散信号变换成一串不相关系数的方法.K-L变换的突出优点是去相关性好,是均方误差(MSE,Mean Square Error)意义下的最佳变换,它在数据压缩技术中占有重要地位. K-L(Karhunen-Loeve)变换形式 设X=(X1,X2,…,XN)T为N维随机矢量,mX=E(X)和CX=E{(X-mX)(X-mX)T}…
GANs and Divergence Minimization 2018-12-22 09:38:27     This blog is copied from: https://colinraffel.com/blog/gans-and-divergence-minimization.html      This post discusses a perspective on GANs which is not new but I think is often overlooked. I'l…