大数据应用日志采集之Scribe演示实例完全解析 引子: Scribe是Facebook开源的日志收集系统,在Facebook内部已经得到大量的应用.它能够从各种日志源上收集日志,存储到一个中央存储系统(可以是NFS,分布式文件系统等)上,以便于进行集中统计分析处理.它为日志的“分布式收集,统一处理”提供了一个可扩展的,高容错的方案.当中央存储系统的网络或者机器出现故障时,scribe会将日志转存到本地或者另一个位置,当中央存储系统恢复后,scribe会将转存的日志重新传输给中央存储系统.其通常…
大数据应用日志采集之Scribe 安装配置指南 大数据应用日志采集之Scribe 安装配置指南 1.概述 Scribe是Facebook开源的日志收集系统,在Facebook内部已经得到大量的应用.它能从各种日志源收集日志,存储到一个中央存储系统上,便于进行集中统计分析处理.它为日志的”分布式收集,统一处理”提供了一个可扩展的,高容错的方案.scribe代码很简单,但是安装配置却很复杂,本文记录了作者实际的一次安装的过程,感觉真是不一般的琐碎,另外Scribe开源社区的版本已经是几年前的版本了,…
摘抄至http://blog.jobbole.com/46673/ 随着BIG DATA大数据概念逐渐升温,如何搭建一个能够采集海量数据的架构体系摆在大家眼前.如何能够做到所见即所得的无阻拦式采集.如何快速把不规则页面结构化并存储.如何满足越来越多的数据采集还要在有限时间内采集.这篇文章结合我们自身项目经验谈一下. 我们来看一下作为人是怎么获取网页数据的呢? 1.打开浏览器,输入网址url访问页面内容.2.复制页面内容的标题.作者.内容.3.存储到文本文件或者excel. 从技术角度来说整个过程…
公众号(五分钟学大数据)已推出大数据面试系列文章-五分钟小面试,此系列文章将会深入研究各大厂笔面试真题,并根据笔面试题扩展相关的知识点,助力大家都能够成功入职大厂! 大数据笔面试系列文章分为两种类型:混合型(即一篇文章中会有多个框架的知识点-融会贯通):专项型(一篇文章针对某个框架进行深入解析-专项演练). 此篇文章为系列文章的第二篇(JVM专项) 第一题:JVM内存相关(百度) 问:JVM内存模型了解吗,简单说下 答: 因为这块内容太多了,许多小伙伴可能记不住这么多,所以下面的答案分为简答和精…
A,首先说说ELK是啥,  ELK是ElasticSearch . Logstash 和 Kiabana 三个开源工具组成.Logstash是数据源,ElasticSearch是分析数据的,Kiabana是展示数据用的 B,开始搞 1,安装 Logstash 依赖包 JDK wget http://download.oracle.com/otn-pub/java/jdk/8u45-b14/jdk-8u45-linux-x64.tar.gz 要是没有wget可以yum -y install wge…
1 需求 从外部购买数据,数据提供方会实时将数据推送到6台FTP服务器上,我方部署6台接口采集机来对接采集数据,并上传到HDFS中 提供商在FTP上生成数据的规则是以小时为单位建立文件夹(2016-03-11-10),每分钟生成一个文件(00.dat,01.data,02.dat,........) 提供方不提供数据备份,推送到FTP服务器的数据如果丢失,不再重新提供,且FTP服务器磁盘空间有限,最多存储最近10小时内的数据 由于每一个文件比较小,只有150M左右,因此,我方在上传到HDFS过程…
Spark相比于Mapreduce的一大优势就是提供了很多的方法,可以直接使用:另一个优势就是执行速度快,这要得益于DAG的调度,想要理解这个调度规则,还要理解函数之间的依赖关系. 本篇就着重描述下Spark提供的Transformations方法. 依赖关系 宽依赖和窄依赖 窄依赖(narrow dependencies) 窄依赖是指父RDD仅仅被一个子RDD所使用,子RDD的每个分区依赖于常数个父分区(O(1),与数据规模无关). 输入输出一对一的算子,且结果RDD的分区结构不变.主要是ma…
Actions reduce(func) Aggregate the elements of the dataset using a function func (which takes two arguments and returns one). The function should be commutative and associative so that it can be computed correctly in parallel. 这个方法会传入两个参数,计算这两个参数返回一个…
flume sink核心类结构 1 核心接口Sink org.apache.flume.Sink /** * <p>Requests the sink to attempt to consume data from attached channel</p> * <p><strong>Note</strong>: This method should be consuming from the channel * within the bounds…
上一篇中我们了解了MapReduce和Yarn的基本概念,接下来带领大家搭建下Mapreduce-HA的框架. 结构图如下: 开始搭建: 一.配置环境 注:可以现在一台计算机上进行配置,然后分发给其它服务器 1.1 编辑mapred-site.xml文件: 进入目录 /opt/hadoop/hadoop-2.6.5/etc/hadoop cd  /opt/hadoop/hadoop-2.6.5/etc/hadoop vim mapred-site.xml 添加如下配置: <configurati…
"大中台.小前台”新架构下,阿里大数据接下来怎么玩?_炬鼎力_新浪博客 http://blog.sina.com.cn/s/blog_1427354e00102vzyq.html "大中台.小前台”新架构下,阿里大数据接下来怎么玩?  此博文包含图片(2016-01-05 11:39:50)转载▼ [淘宝大学]阿里巴巴上周宣布“大中台.小中台”组织新架构后,阿里大数据接下来怎么玩,成为各界关注的焦点.12月15日,阿里大数据团队首次公开亮相,对阿里未来大数据策略进行解读,并宣布首个商家…
CDN是非常重要的互联网基础设施,用户可以通过CDN,快速的访问网络中各种图片,视频等资源.在访问过程中,CDN会产生大量的日志数据,而随着如今越来越复杂的网络环境变化,和业务的迅速增长,日志数据变得更大量.更多维度,同时其稳定性和报警监控的要求越来越高.这些数据通常都与用户的下一步业务决策息息相关. 通过对CDN访问日志的分析,可以挖掘出大量有用的信息作为监控.报警.渠道分析.运营分析的数据来源.而对于技术或者运维人员来说,CDN的线上问题其实是不好排查的,因为节点遍布全球各地,我们没办获知各…
[大数据技巧]日均2TB日志数据在线快速处理之法 http://click.aliyun.com/m/8958/…
下载地址.请联系群主 第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目中涉及的Hadoop.Hive相关的知识 第2章 Spark及其生态圈概述 Spark作为近几年最火爆的大数据处理技术,是成为大数据工程师必备的技能之一.本章将从如下几个方面对Spark进行一个宏观上的介绍:Spark产生背景.特点.发展史.Databricks官方调查结果.Spark与Hadoop…
(1)在windows环境上配置HADOOP_HOME环境变量 (2)在eclipse上运行程序 (3)注意:如果eclipse打印不出日志,在控制台上只显示 1.log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell). 2.log4j:WARN Please initialize the log4j system properly. 3.log4j:WARN See http://logg…
第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目中涉及的Hadoop.Hive相关的知识 第2章 Spark及其生态圈概述 Spark作为近几年最火爆的大数据处理技术,是成为大数据工程师必备的技能之一.本章将从如下几个方面对Spark进行一个宏观上的介绍:Spark产生背景.特点.发展史.Databricks官方调查结果.Spark与Hadoop的对比.Spark开发…
1. 解析参数工具类(ParameterTool) 该类提供了从不同数据源读取和解析程序参数的简单实用方法,其解析args时,只能支持单只参数. 用来解析main方法传入参数的工具类 public class ParseArgsKit { public static void main(String[] args) { ParameterTool parameters = ParameterTool.fromArgs(args); String host = parameters.getRequ…
从一个初级程序员到高级程序员的经历 你好!我是谦先生,我是茫茫程序猿中的一猿,平凡又执着. 刚入行的时候说实话,啥都不懂,就懂点皮毛的java,各种被虐狗的感觉.又写js又写css又写后台...慢慢被虐出来了-开始掌握一些好多前端框架比如jqury.jquery ui.easyui.datagrid.zTree.extjs.boostrap.echart...各种各样的(XoX),后端也因为外包的项目各种各样,主流的框架如struts2.hibernate.mybatis.spring都要熟悉使…
课程整套CDH相关的软件下载地址:http://archive.cloudera.com/cdh5/cdh/5/ cdh-5.7.0 生产或者测试环境选择对应CDH版本时,一定要采用尾号是一样的版本   http://hadoop.apache.org/ 对于Apache的顶级项目来说,projectname.apache.org Hadoop: hadoop.apache.org Hive: hive.apache.org Spark: spark.apache.org HBase: hbas…
程学旗先生是中科院计算所副总工.研究员.博士生导师.网络科学与技术重点实验室主任.本次程学旗带来了中国大数据生态系统的基础问题方面的内容分享.大数据的发展越来越快,但是对于大数据的认知大都还停留在最初的阶段——大数据是一类资源.一类工具,其实“大数据”更多的体现的是一个认知和思维,是一种战略.认知和文化. 以下为分享实录全文: 一年多来,通过组织中国大数据技术大会.CCF大数据学术会议以及各类大大小小的应用峰会与学术论坛,结合我们科学院网络数据科学与技术重点实验室所承担的与大数据相关的重大基础课…
成都大数据Hadoop与Spark技术培训班   中国信息化培训中心特推出了大数据技术架构及应用实战课程培训班,通过专业的大数据Hadoop与Spark技术架构体系与业界真实案例来全面提升大数据工程师.开发设计人员的工作水平,旨在培养专业的大数据Hadoop与Spark技术架构专家,更好地服务于各个行业的大数据项目开发和落地实施. 2015年近期公开课安排:(全国巡回开班) 08月21日——08月23日大连 09月23日——09月25日北京 10月16日——10月18日成都 11月27日——11…
转自http://www.cnblogs.com/end/archive/2012/02/05/2339152.html 随着互联网.移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. 作为一家互联网数据分析公司,我们在海量数据的分析领域那真是被“逼上梁山”.多年来在严苛的业务需求和数据压力下,我们几乎尝试了所有可能的大数据分析方法,最终落地于Had…
大数据关键技术 大数据环境下数据来源非常丰富且数据类型多样,存储和分析挖掘的数据量庞大,对数据展现的要求较高,并且很看重数据处理的高效性和可用性. 传统数据处理方法的不足 传统的数据采集来源单一,且存储.管理和分析数据量也相对较小,大多采用关系型数据库和并行数据仓库即可处理.对依靠并行计算提升数据处理速度方面而言,传统的并行数据库技术追求高度一致性和容错性,根据CAP理论,难以保证其可用性和扩展性. 传统的数据处理方法是以处理器为中心,而大数据环境下,需要采取以数据为中心的模式,减少数据移动带来…
一.项目背景二.项目架构三.项目实现3.1.数据生产3.1.1.数据结构3.1.2.编写代码3.1.3.打包测试3.2.数据采集/消费(存储)3.2.1.数据采集:采集实时产生的数据到 kafka 集群3.2.2.编写代码:数据消费(HBase)3.2.3.编写测试单元:范围查找数据(本方案已弃用,但需掌握)3.2.4.运行测试:HBase 消费数据3.2.5.编写代码:优化数据存储方案3.2.6.运行测试:协处理器3.2.7.编写测试单元:范围查找数据 一.项目背景   通信运营商每时每刻会产…
摘要:Admaster数据挖掘总监 随着互联网.移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. 随着互联网.移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. Hadoop在可伸缩性.健壮性.计算性能…
一.概述 根据之前的凡技术必登其官网的原则,我们当然先得找到它的官网:http://hadoop.apache.org/ 1.什么是hadoop 先看官网介绍: The Apache™ Hadoop® project develops open-source software for reliable, scalable, distributed computing. The Apache Hadoop software library is a framework that allows fo…
相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础软件的安装 CentOS6安装各种大数据软件 第四章:Hadoop分布式集群配置 CentOS6安装各种大数据软件 第五章:Kafka集群的配置 CentOS6安装各种大数据软件 第六章:HBase分布式集群的配置 CentOS6安装各种大数据软件 第七章:Flume安装与配置 CentOS6安装各…
章节一  2018年 ELK课程计划和效果演示1.课程安排和效果演示    简介:课程介绍和主要知识点说明,ES搜索接口演示,部署的ELK项目演示    es: localhost:9200    kibana http://localhost:5601/ 章节二 elasticSearch 6.2版本基础讲解到阿里云部署实战 2.搜索引擎知识介绍和相关框架    简介:介绍搜索的基本概念,市面上主流的搜索框架elasticSearch和solr等对比    什么是搜索:在海量信息中获取我们想要…
摘要:Admaster数据挖掘总监 随着互联网.移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. 随着互联网.移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海量数据的分析已经成为一个非常重要且紧迫的需求. Hadoop在可伸缩性.健壮性.计算性能…
1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可用于生成决策的时间非常少:1秒定律,这和传统的数据挖掘技术有着本质区别(谷歌的dremel可以在1秒内调动上千台服务器处理PB级数据) 价值密度低,商业价值高 大数据影响: 对科学研究影响:出现科学研究第四方式数据(前三个分别是实验.理论.计算) 对思维方式影响:全样而非抽样.效率而非准确.相关而非…