UOJ#347. 【WC2018】通道(边分治)】的更多相关文章

题目链接: [WC2018]通道 题目大意:给出三棵n个节点结构不同的树,边有边权,要求找出一个点对(a,b)使三棵树上这两点的路径权值和最大,一条路径权值为路径上所有边的边权和. 我们按照部分分逐个分析有1.2.3棵树时的做法. 首先说一个结论,在下面讲解中能应用到: 对于一棵树T1的直径两端点为u,v,对于另一棵树T2的直径两端点为x,y,如果将两棵树合并(即将两棵树中的各一个点连边)那么新树的直径的两端点一定是u,v,x,y中的两个. 证明见树的直径及其性质与证明. 一.一棵树 这个很好做…
传送门 毒瘤数据结构题qwq 设三棵树分别为$T1,T2,T3$ 先将$T1$边分治,具体步骤如下: ①多叉树->二叉树,具体操作是对于每一个父亲,建立与儿子个数相同的虚点,将父亲与这些虚点穿成一条链(父亲在链顶),在虚点的另一边接上儿子,之前父亲到儿子的边权移动到虚点到这个儿子的边上.代码长下面这样 void rebuild(int x , int f){ int pre = ++cntNode , p = x;//pre是当前虚点的编号 for(int i = Thead[x] ; i ;…
\([WC2018]\)通道(虚树,边分练习) 感受码题的快感 这段时间真的是忙忙忙忙忙,省选之前还是露个脸,免得以后没机会了. 但是我感觉我的博客真的没啥人看,虽然我挺想要有人看的,但是自己真的没啥时间写优质博客,而且最主要的是我做的题大佬们都做过. 现在这样还不如转肯竞... 不管怎样,\(mona\),在努力点吧,拜托了. 拜托了. 进入正题:思路讲解 这题还是很有意思的. 题目大概是给你三棵树,你需要找到一个点对使得他们在三棵树上的路径长度加起来要最大. 重新理一下思路. 像这样的题,给…
[UOJ#348][WC2018]州区划分 试题描述 小 \(S\) 现在拥有 \(n\) 座城市,第ii座城市的人口为 \(w_i\),城市与城市之间可能有双向道路相连. 现在小 \(S\) 要将这 \(n\) 座城市划分成若干个州,每个州由至少一个城市组成,每个城市在恰好一个州内. 假设小 \(S\) 将这些城市划分成了 \(k\) 个州,设 \(V_i\) 是第 \(i\) 个州包含的所有城市组成的集合. 定义一条道路是一个州的内部道路,当且仅当这条道路的两个端点城市都在这个州内. 如果一…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ347.html 题意 有三棵树,边有边权. 对于所有点对 (x,y) 求在三棵树上 x 到 y 的距离之和 的最大值. 点数 <=100000 题解 我自闭了. 在此之前,我没写过边分治,只写过一次虚树. 我自闭了. 一棵树怎么做? 树的直径. 两棵树怎么做? 有一个定理:从点集A中的点到点集B中的点的最长路径的两端点一定属于   点集A中最长路两端点和点集B中最长路两端点  构成的集合. 首先,在第一…
传送门 就是求两个点 \(a,b\) 使得 \(dis_1(a,b)+dis_2(a,b)+dis_3(a,b)\) 最大 step1 对第一棵树边分治 那么变成 \(d_1(a)+d_1(b)+dis_2(a,b)+dis_3(a,b)\) 最大 并且 \(a,b\) 属于边分开的不同的集合 \(S,T\) 边分治 对于一条边,算经过这条边的路径的答案 点分治不方便的就是同一棵子树的容斥,而边分治不用考虑 直接边分治显然菊花就卡掉了 所以我们要转二叉树 具体来说就是把一个点的儿子建一棵线段树,…
题目:http://uoj.ac/problem/347 https://www.luogu.org/problemnew/show/P4220 先写了暴力分的44分.那个两棵树.其中一棵是编号连续的链.边权都是1的点好像可以线段树合并,但没写. #include<cstdio> #include<cstring> #include<algorithm> #define ll long long using namespace std; ll rdn() { ll re…
题面 传送门 题解 代码不就百来行么也不算很长丫 虽然这题随机化贪心就可以过而且速度和正解差不多不过我们还是要好好学正解 前置芝士 边分治 米娜应该都知道点分治是个什么东西,而边分治,顾名思义就是对边进行分治,即每次选出一条"子树中点的个数的最大值最小"的边,处理所有经过这条边的路径的贡献,然后割掉这条边之后对子树递归下去就好了 然而出题人给你一个菊花图就能把你卡得不要不要的 我们发现上述策略在一个二叉树上是最优的,因为割掉边之后左右子树大小都会变为原来的一半 于是这里就需要多叉树转二…
题目:https://www.luogu.org/problemnew/show/P4220 http://uoj.ac/problem/347 先写了一下 n^2 和三棵树一样的情况,n^2 还写了ST表O(1)求 lca,其实做 n 遍 dfs 就好了... #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; ll rd()…
题目大意 给你三棵树,点数都是\(n\).求 \[ \max_{i,j}d_1(i,j)+d_2(i,j)+d_3(i,j) \] 其中\(d_k(i,j)\)是在第\(k\)棵数中\(i,j\)两点之间的距离. \(n\leq 100000\) 题解 设\(d(i,j)=d_1(i,j)+d_2(i,j)+d_3(i,j),h_k(i)\)为\(i\)号点在第\(k\)棵树上的深度 一棵树 树形DP. 时间复杂度:\(O(n)\) 两棵树 这是一道集训队自选题. 点分治+动态点分治 设这两个点…