神经网络构架:主要时表示神经网络的组成,即中间隐藏层的结构 对图片进行说明:我们可以看出图中的层数分布: input layer表示输入层,维度(N_num, input_dim)  N_num表示输入层的样本个数, input_dim表示输入层的维度, 即变量的个数 hidden layer1 表示第一个隐藏层,维度(input_dim, hidden_dim1input_dim表示输入层的维度,hidden_dim1示隐藏层的维度 hidden layer2 表示第二个隐藏层,维度(hidd…
http://gitbook.cn/gitchat/column/59f7e38160c9361563ebea95/topic/59f7e86d60c9361563ebeee5 wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html 一.简介 手写图片识别的实现,分为三步: 1,数据的准备 2,模型的设计 3,代码实现 我的另一篇博文-神经网络的解释 什么是神经网络 input层代表将二维数组从所有行都排…
什么是激活函数? 激活函数(Activation functions)对于人工神经网络模型去学习.理解非常复杂和非线性的函数来说具有十分重要的作用. 它们将非线性特性引入到我们的网络中.其主要目的是将A-NN模型中一个节点的输入信号转换成一个输出信号.该输出信号现在被用作堆叠中下一个层的输入. 如果我们不运用激活函数的话,则输出信号将仅仅是一个简单的线性函数.线性函数一个一级多项式.现如今,线性方程是很容易解决的,但是它们的复杂性有限,并且从数据中学习复杂函数映射的能力更小. 一个没有激活函数的…
神经网络中还有一些激活函数,池化函数,正则化和归一化函数等.需要详细看看,啃一啃吧.. 1. 激活函数 1.1 激活函数作用 在生物的神经传导中,神经元接受多个神经的输入电位,当电位超过一定值时,该神经元激活,输出一个变换后的神经电位值.而在神经网络的设计中引入了这一概念,来增强神经网络的非线性能力,更好的模拟自然界.所以激活函数的主要目的是为了引入非线性能力,即输出不是输入的线性组合. 假设下图中的隐藏层使用的为线性激活函数(恒等激活函数:a=g(z)),可以看出,当激活函数为线性激活函数时,…
不用相当的独立功夫,不论在哪个严重的问题上都不能找出真理:谁怕用功夫,谁就无法找到真理. —— 列宁 本文主要介绍损失函数.优化器.反向传播.链式求导法则.激活函数.批归一化. 1 经典损失函数 1.1交叉熵损失函数——分类 (1)熵(Entropy) 变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大.log以2为底! H(x) = E[I(xi)] = E[ log(2,1/p(xi)) ] = -∑p(xi)log(2,p(xi)) (i=1,2,..n) (2)交叉熵(Cr…
在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的. 输入:n*c*h*w 输出:n*c*h*w 常用的激活函数有sigmoid, tanh,relu等,下面分别介绍. 1.Sigmoid 对每个输入数据,利用sigmoid函数执行操作.这种层设置比较简单,没有额外的参数. 层类型:Sigmoid 示例: layer { n…
Neural Networks: Learning 内容较多,故分成上下两篇文章. 一.内容概要 Cost Function and Backpropagation Cost Function Backpropagation Algorithm Backpropagation Intuition Backpropagation in Practice Implementation Note:Unroll Parameters Gradient Checking Random Initializa…
在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的. 输入:n*c*h*w 输出:n*c*h*w 常用的激活函数有sigmoid, tanh,relu等,下面分别介绍. 1.Sigmoid 对每个输入数据,利用sigmoid函数执行操作.这种层设置比较简单,没有额外的参数. 层类型:Sigmoid 示例: layer { n…
Softmax Regression Chapter Basics generate random Tensors Three usual activation function in Neural Network Softmax funcion Softmax Regression Logistic Regression Softmax Regression Examples Basics generate random Tensors Three usual activation funct…
本文试图描述构建一个网络结构的layers,可以用prototxt脚本直接写,也可以用python接口实现. 最简单的神经网络包含但不限于以下四部分: 数据层(Data): Data.ImageData 激活层(Activation): sigmoid.tanh.relu 视觉层(vision) :Convolution.Pooling. Local Response Normalization (LRN). im2col 输出层(output): softmax_loss.Inner Prod…