二次剩余和 Cipolla 算法】的更多相关文章

对于同余式 \[x^2 \equiv n \pmod p\] 若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余 我们需要计算的是在给定范围内所有满足条件的\(x\),同时为了方便,我们只讨论\(p\)是奇质数的情况 前置定理 \(x^2 \equiv (x+p)^2 \pmod p\) 证明:\(x^2 \equiv x^2 + 2xp + p^2 \pmod p\)显然成立 对于\(x^2 \equiv n \pmod…
二次剩余定义: 在维基百科中,是这样说的:如果q等于一个数的平方模 n,则q为模 n 意义下的二次剩余.例如:x2≡n(mod p).否则,则q为模n意义下的二次非剩余. Cipolla算法:一个解决二次剩余强有力的工具,用来求得上式的x的一个算法. 需要学习的数论及数学基础:勒让德符号.欧拉判别准则和复数运算. 勒让德符号:判断n是否为p的二次剩余,p为奇质数. 欧拉定理为xφ(p)≡1(mod p) 当p为素数时,可知φ(p)=p-1,转化为xp-1≡1(mod p) 开根号后为 x(p−1…
转自:http://blog.csdn.net/doyouseeman/article/details/52033204 简介 Cipolla算法是解决二次剩余强有力的工具,一个脑洞大开的算法. 认真看懂了,其实是一个很简单的算法,不过会感觉得出这个算法的数学家十分的机智. 基础数论储备 二次剩余 首先来看一个式子x2≡n(modp),我们现在给出n,要求求得x的值.如果可以求得,n为mod p的二次剩余,其实就是n在mod p意义下开的尽方.Cipolla就是一个用来求得上式的x的一个算法.…
学习了一下1个$\log$的二次剩余.然后来水一篇博客. 当$p$为奇素数的时候,并且$(n, p) \equiv 1 \pmod{p}$,用Cipolla算法求出$x^2 \equiv n \pmod{p}$的一组解. 寻找一个$a$,使得$a^2 - n$是一个二次非剩余. 期望只用2次就能找到. 令$\omega \equiv \sqrt{a^2 - n} \pmod{p}$,显然这个值不存在,我们强行扩域. 那么$(a + \omega)^{(p + 1) / 2}$即为一组解. 证明如…
二次剩余 ppp是奇素数.所有的运算都是在群Zp∗Z_{p}^{*}Zp∗​中的运算.方程x2=a≠0x^2=a \neq 0x2=a̸​=0问是否有解,以及解是什么?若有解,aaa就是模ppp的二次剩余:若无解,则aaa就是模ppp的非二次剩余. a=0a=0a=0,显然只有唯一解x=0x=0x=0. a≠0a\neq 0a̸​=0,有解等价于ap−12=1a^{\frac{p-1}{2}}=1a2p−1​=1;无解等价于ap−12=−1a^{\frac{p-1}{2}}=-1a2p−1​=−…
欧拉准则 \(a\)是\(p\)的二次剩余等价于\(a^{\frac{p-1}{2}}\equiv 1\pmod p\),\(a\)不是\(p\)的二次剩余等价于\(a^{\frac{p-1}{2}}\equiv -1\pmod p\). Cipolla 若\(a^2-n\)不是\(p\)的二次剩余,则\(p\)的二次剩余为\((a+\sqrt{a^2-n})^\frac{p+1}{2}\). 因此我们随机\(a\)即可.\(\sqrt{a^2-n}\)的计算用复数. 时间复杂度约为\(O(\l…
Cipolla LL ksm(LL k,LL n) { LL s=1; for(;n;n>>=1,k=k*k%mo) if(n&1) s=s*k%mo; return s; } namespace number { LL D; struct Z { LL x,y; Z(LL _x=0,LL _y=0){x=_x,y=_y;} }; Z operator +(const Z &x,const Z &y) {return Z((x.x+y.x)%mo,(x.y+y.y)%m…
题意:求${x^2} \equiv n\bmod p$ 解题关键: 定理:若$a$满足$w = {a^2} - n$是模$p$的二次非剩余,即,${x^2} = w\bmod p$无解,则${(a + \sqrt w )^{\frac{{p + 1}}{2}}}$是二次剩余方程${x^2} \equiv n\bmod p$的解. 证明: $\begin{array}{l}{x^2} \equiv {(a + \sqrt w )^{p + 1}} \equiv (a + \sqrt w ){(a…
数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的没的的前置 导数 \(f'(x)=\lim\limits_{\triangle x\rightarrow 0}\frac{f(x+\triangle x)-f(x)}{\triangle x}\) \(\sin x:\cos x\) \(\cos x:-\sin x\) \(\ln x:\frac{…
部分引用自:http://blog.csdn.net/v5zsq/article/details/77255048 所以假设方程 x^2+x+1=0 在模p意义下的解为d,则答案就是满足(ai/aj) mod p = d的数对(i,j)的数量(i<j). 现在把问题转化为解这个模意义下的二次方程. x^2+x+1=0 配方:x^2+x+1/4+3/4=0 (x+1/2)^2+3/4=0 同乘4:(2x+1)^2+3=0 即(2x+1)^2=-3 (mod p) 换句话说,我们必须保证-3+p是p…