我们看到,利用TensorFlow 和训练好的Googlenet 可以生成多尺度的pattern,那些pattern看起来比起单一通道的pattern你要更好,但是有一个问题就是多尺度的pattern里高频分量太多,显得图像的噪点很多,为了解决这个问题,可以进一步的引入一个先验平滑函数,这样每次迭代的时候可以对图像进行模糊,去除高频分量,这样一般来说需要更多的迭代次数,另一种方式就是每次迭代中增强低频分量的梯度,这种技术被称为: 拉普拉斯金字塔分解,这里我们就要用到这种技术,我们称为:Lapla…
在TensorFlow 的官网上,有一个很有趣的教程,就是用 TensorFlow 以及训练好的深度卷积神经(GoogleNet)网络去生成一些有趣的pattern,通过这些pattern,可以更加深入的去了解神经网络到底学到了什么, 这个教程有四个主要部分: 1:简单的单通道纹理pattern的生成: 2:利用tiled computation 生成高分辨率图像: 3:利用 Laplacian Pyramid Gradient Normalization 生成各种有趣的视觉效果: 4:生成类似…
本文为周志华机器学习西瓜书第三章课后习题3.5答案,编程实现线性判别分析LDA,数据集为书本第89页的数据 首先介绍LDA算法流程: LDA的一个手工计算数学实例: 课后习题的代码: # coding=utf-8# import flattenimport tensorflow as tffrom numpy import *import numpy as npimport matplotlib.pyplot as pltdef LDA(c1,c2): m1=mean(c1,axis=0) m2…
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α:第二部分是SMO算法对于对偶因子的求解:第三部分是核函数的原理与应用,讲核函数的推理及常用的核函数有哪些:第四部分是支持向量机的应用,按照机器学习实战的代码详细解读. 机器学习之支持向量机(一):支持向量机的公式推导 机器学习之支持向量机(二):SMO算法 机器学习之支持向量机(…
Google机器学习课程基于TensorFlow  : https://developers.google.cn/machine-learning/crash-course         https://developers.google.com/machine-learning/crash-course…
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第三章正则化,主要介绍了线性回归和逻辑回归中,怎样去解决欠拟合和过拟合的问题 简要介绍:在进行线性回归或逻辑回归时,常常会出现以下三种情况 回归…
系统学习机器学习之神经网络(三)--GA神经网络与小波神经网络WNN 2017年01月09日 09:45:26 Eason.wxd 阅读数 14135更多 分类专栏: 机器学习   1 遗传算法1.1 遗传算法简介:遗传算法是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随 机化搜索方法.它是由美国的 J.Holland 教授 1975 年首先提出,其主要特点是直接对结构对 象进行操作,不存在求导和函数连续性的限定:具有内在的隐并行性和更好的全局寻优能力: 采用概率化的寻优方法…
在前面一篇博客里,我们介绍了利用TensorFlow 和训练好的 Googlenet 来生成简单的单一通道的pattern,接下来,我们要进一步生成更为有趣的一些pattern,之前的简单的pattern都是基于单一通道,单一尺度的,现在我们来试试多尺度下生成的pattern # 这部分代码和之前单一通道的一样 # boilerplate code from __future__ import print_function import os from io import BytesIO imp…
         所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4288836.html 微软Infer.NET机器学习组件:http://www.cnblogs.com/asxinyu/p/4329742.html 关于本文档的说明 本文档基于Infer.NET 2.6对Infer.NET User Guide进行中文翻译,但进行了若干简化和提炼,按照原网站的思路进行,但不局限与其顺序. 欢迎传播分享,必须保持原作者的信息,但禁止将该文档直接用于商业盈…
微软发布了其最新版本的机器学习框架:ML.NET 0.11带来了新功能和突破性变化. 新版本的机器学习开源框架为TensorFlow和ONNX添加了新功能,但也包括一些重大变化, 这也是发布RC版本之前的最后一个预览版,这个月底将发布0.12版本,也就是RC1. ML.NET的创新0.11 0.11 版本的ML.NET现在还支持 TensorFlowTransformer组件中的文本输入数据.TensorFlow模型不仅可用于图像,还可用于文本分析.这在.NET博客的代码示例中进行了说明,该博客…