P4198-楼房重建【线段树】】的更多相关文章

题目大意: 小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都还没有开始建造,它们的高度均为0.在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大—修建,也可以比原来小—拆除,甚至可以保持不变—建筑队这天什么事也没做).请你帮小A数数每天在建筑队完工之后…
题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段 表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都还没有开始建…
题意 题目链接 Sol 别问我为什么发两遍 就是为了骗访问量 这个题的线段树做法,,妙的很 首先一个显然的结论:位置\(i\)能被看到当且仅当\(\frac{H_k}{k} < \frac{H_i}{i}, k < i\) 考虑直接维护区间\([l, r]\)的可以被看到的点. 因为只有单点修改,因此只需考虑如何合并两个区间即可 维护区间内\(\frac{H_i}{i}\)的最大值,设其为\(mx\) 首先左孩子的答案可以直接加上,考虑左孩子对右孩子的贡献,如果\(mx_{ls} > m…
2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3294  Solved: 1554[Submit][Status][Discuss] Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和…
题目链接 https://www.luogu.org/problemnew/show/P4198 分析 一句话题意,一条数轴上有若干楼房,坐标为\(xi\)的楼房有高度\(hi\),那么它的斜率为\(hi/xi\),操作包含单元素高度修改,动态询问最长上升斜率序列个数 一开始想什么分治或是离线操作之类的,却因为水平低并不会做,看了题解居然发现就是线段树!看了一下感觉真妙啊,线段树真是个神奇的数据结构 线段树维护两个东西\(sum[now],mx[now]\); \(sum[now]\)是\(no…
2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.…
Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树维护两个值:cnt 能看到的最多楼房数: mx 最大斜率数: 对于一段区间,从左子区间的角度出发来限制右子区间,得到总区间的 cnt 和 mx: 转移时关注新斜率和左右子区间最大斜率的关系即可. 代码如下: #include<iostream> #include<cstdio> #include<cstring> using namespace std…
链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2957 思路: 用分块可以很简单的过掉,但是这道题也可以用线段树写. 分类讨论左区间最大值对右区间取值的影响,这样每次都只计算左右区间其中一个,复杂度就降成了logn. 实现代码: #include<bits/stdc++.h> using namespace std; #define ll long long #define lson l,m,rt<<1 #define r…
一个显而易见的结论是,这种数字的值是单调递增的.我们修改一个数只会对这个数后面的数造成影响.考虑线段树划分出来的若干线段. 这里有两种情况: 1.某个线段中的最大值小于等于修改的数,那么这个线段的贡献为0,无需处理 2.否则我们将这个线段分成两个并单独考虑,如果左侧的最大值大于修改的数,那么是不影响右侧的贡献的,只需递归处理左侧:否则就变成了第一种情况 那么我们就可以用线段树来解决这个问题了 # include <cstdio> # include <cstring> # incl…
题目链接 Solution 经典的一道线段树题,难点在于如何合并节点. 由于题目要求直线要求不相交,则斜率均大于前面的点即为答案. 所以以斜率为权值. 考虑线段树每一个节点维护两个值: \(Max\) 代表当前节点中的最大值. \(Sum\) 代表对于任意一个节点 \(i\) , 其中满足\(w_j>Max(w_{l[i]},w_{l[i]+1}...,w_{r[i]})\)的个数,其中 \(l[i]\),\(r[i]\) 指节点 \(i\) 所在的区间左右端点.\(w\)为斜率. 每一次插入一…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树维护原点到楼顶的斜率,可以知道答案就是从原点开始斜率递增的个数: 记录一个mx数组表示这一段上最大的斜率,二分,分类讨论,递归求解: 而且如果要取rs的长度,不是直接取tr[rs],而是总长度减去tr[ls],因为不能从右边一段的起点开始…… 代码如下: #include<iostream> #include<cstdio> #include<cstring…
Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都…
传送门 题意:转换成斜率然后维护区间的上升序列(从区间第一个数开始的单调上升序列) 区间保存这个区间的最长序列的长度$ls$和最大值$mx$ 如何合并两个区间信息? 左区间一定选择,右区间递归寻找第一个大于左区间最大值$v$的位置 具体来看,如果右区间的左最大值$<v$那么左面不可能选递归右面 否则这个区间所选的右面一定选,减去左面的$ls$再递归左面 合并复杂度$O(logn)$,总复杂度$O(nlog^2n)$ #include <iostream> #include <cst…
P4198 楼房重建 题目链接 https://www.luogu.org/problemnew/show/P4198 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)…
P4198 楼房重建 集中写博客= = 首先把高度变成斜率 然后就比较玄学了,首先用线段树维护一个区间的斜率最大值,和只看这个区间时能看见的楼房个数ans 然后更新时先更新max,再处理神奇的ans 如果max[ls]>=max[rs],那么右区间都被遮住了可以不考虑,答案是ans[ls] 否则考虑右区间,写一个函数calc(x,h)表示x区间的最左边有一栋高h的楼房,此时x区间能看见几栋楼房,所以这时答案是ans[ls]+calc(rs,max[ls]) 然后下面是calc(x,h)的实现 如…
洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时…
正解:单调栈+线段树 解题报告: 传送门! 首先考虑不修改的话就是个单调栈板子题昂,这个就是 然后这题的话,,,我怎么记得之前考试好像有次考到了类似的题目昂,,,?反正我总觉着这方法似曾相识的样子,,,想不起来辣,慢慢落实之前考题的时候再说趴QAQ 然后具体看到这道题的话,就是用个线段树,每个节点记录这个节点的最长序列和最大斜率 然后对于左右两个子节点合并 首先左节点直接保存下来就好 然后右节点,可以继续分半递归查找找到能合并的最左边节点 挺好理解的就是不太好表示,具体看代码算了QAQ 这样修改…
传送门 分析 被线段树按在地上摩擦  先把左边转化成斜率,那么这个题就转化成每次修改一个点的值,输出前缀最大值的个数 看到标签是线段树,所以还是想想线段树的做法吧 既然是线段树,那么就要将区间分成两半,那么左半区间可以直接递归下去做,右半区间就要考虑左半区间对它的影响 左半区间的最大值会对右半区间的前缀最大值的个数造成影响,所以询问时应该带上之前的最大值 考虑一次询问(l,r,x),表示l前面的数的最大值为x,区间(l,r)内的前缀最大值,那么每次就要输出询问(1,n,0) 用dp式子转移的思想…
题目 传送门 题解 首先转化成到(0,0)(0,0)(0,0)的斜率. 那么就是求多少个点是前缀最大值. 做法是线段树,用gao(i,x)gao(i,x)gao(i,x)表示在iii区间内,之前最大值为xxx的答案. 然后发现gao(p→r,p→l→max)gao(p\to r,p\to l\to max)gao(p→r,p→l→max)就是gao(p,0)−gao(p→l,0)gao(p,0)-gao(p\to l,0)gao(p,0)−gao(p→l,0),所以直接用数组存一下gao(i,0…
思路:分块 提交:2次(第一次的求解有问题) 题解: 设块长为$T$,我们开$N/T$个单调栈,维护每一块的上升斜率. 修改时暴力重构整个块,$O(T)$ 求解时记录一个最大斜率$lst$,然后块内二分,求出能看见几个,同时更新$lst$ 时间复杂度$O(N*(T+\frac{N}{T}*log_2T)$,也不知道怎么算最小值,瞎猜$T=\sqrt{N*log_2N}$(其实当时算了一下,现在发现算错了,就当是猜的吧$qwq$),后来试了试,定块长$1000$也可以. #include<cstd…
原题传送门 根据斜率来建线段树,线段树维护区间最大斜率以及区间内能看见的楼房的数量(不考虑其他地方的原因,两个节点合并时再考虑) 细节见程序 #include <bits/stdc++.h> #define db double #define N 100005 #define getchar nc using namespace std; inline char nc(){ static char buf[100000],*p1=buf,*p2=buf; return p1==p2&&…
题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都还没有开始建造…
题面 首先你要知道题问的是什么:使用一种数据结构,动态地维护以1为起点地最长上升子序列(把楼房的高度转化成斜率地序列)的长度: 怎么做?线段树! 我们在线段树上维护两个东西:1.这个区间内斜率的最大值 2.从这段区间开头可以看到的区间内的所有楼房 初始化:对于每一个叶子节点,从这段区间头可以看到的楼房数量一定为1,区间斜率最大值一定为该点的斜率: 在合并时: 1.我们可以先查找右区间的左区间的最大值,如果右区间的左区间的最大值比左区间的最大值小,那么右区间的左区间的所有答案一定看不到,所以我们就…
题意:给定序列,每次修改一个值,求前缀最大值的个数. 解:线段树经典应用. 每个节点维护最大值和该区间前缀最大值个数. 发现我们不用下传标记,只需要合并区间. 需要实现一个函数int ask([l r] lm)求出区间[l r]中前一个数是lm时前缀最大值个数. 那么当lm >= large[ls]时,return ask([mid r] lm) 这个很好理解,左子区间的所有数都不会成为前缀最大值. 当lm < large[ls]时,return ask([l mid] lm) + (sum[…
题目描述 地平线(x轴)上有n个矩(lou)形(fang),用三个整数h[i],l[i],r[i]来表示第i个矩形:矩形左下角为(l[i],0),右上角为(r[i],h[i]).地平线高度为0.在轮廓线长度最小的前提下,从左到右输出轮廓线. 下图为样例2 输入输出格式 输入格式: 第一行一个整数n,表示矩形个数 以下n行,每行3个整数h[i],l[i],r[i]表示第i个矩形. 输出格式: 第一行一个整数m,表示节点个数 以下m行,每行一个坐标表示轮廓线上的节点.从左到右遍历轮廓线并顺序输出节点…
题解 我们转而维护每个点的斜率,显然一个楼房能被看见它就是一个前缀最大值,斜率比较为了节约精度可以用向量替代 我们每个区间维护被看到的楼房的个数,和楼房的最大值,叶子节点在有楼房时,值为1 那么考虑合并两个区间,左节点的所有能被看到的楼房还是能被看到,右边节点能看到的楼房的斜率需要大于左边节点所需要的斜率最大值 为了找到这些我们去右节点的左右区间去找 如果这个值\(P\)大于等于区间左边的最大值,那么这个值要在右边找 如果小于的话,加上右边的大小,即\(tr[u].cnt - tr[u <<…
思路 此题可转化为以下模型 给定序列\(a[1...n]\),支持单点修改,每次求区间单调栈大小 \(n,Q\le 10^5\) 区间单调栈是什么呢?对于一个区间,建立一个栈,首先将第一个元素入栈,从左往右扫,如果当前元素大于等于栈顶元素,就将其入栈,由此形成的栈即为单调不减的区间单调栈. 转化一下,其实就是求区间内满足\(a[i]=\max\limits_{j=1}^ia[j]\)的\(a[i]\)的个数. 一个自然的想法是维护单调栈的大小\(siz\),那么如何去进行区间的合并呢? 合并两个…
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来,单次时间复杂度严格\(O(\log n)\). 至于又有合并又有分裂的复杂度,蒟蒻一直不会比较有说服力的证明,直到看见SovietPower巨佬的题解 对于只有合并:合并两棵线段树的过程,是找到它们\(x\)个重合的节点的位置,并将它们合并,而对于不重合的节点会跳过. 注意到合并与分裂类似互逆过程,…
最长不下降子序列 题目大意: 给定一个长度为 N 的整数序列:A\(_{1}\),A\(_{2}\),⋅⋅⋅,A\(_{N}\). 现在你有一次机会,将其中连续的 K 个数修改成任意一个相同值. 请你计算如何修改可以使修改后的数列的最长不下降子序列最长,请输出这个最长的长度. 最长不下降子序列是指序列中的一个子序列,子序列中的每个数不小于在它之前的数. 题目思路: 我们考虑这样两个数组,f[ ],g[ ],分别表示以i为结尾的最长不下降子序列长度和以i为开始的最长子序列长度,那我们的答案如果在不…