https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法1: 发现暴力枚举k,就变成这道模板题 复杂度O(nlogn) #pragma GCC optimize("Ofast") #include<cstdio> #include<algorithm> #include<cstring> #include&l…
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum 输入输出样例 输入样例#1: 2 输出样例#1: 5 说明 数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000 Solution 这道题的做法貌似很多...如果你同时会狄利克雷卷积和莫比乌斯反演的话也可以强…
题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum 输入输出样例 输入样例#1: 2 输出样例#1: 5 说明 数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000 分析: 无聊的出题人出的无聊的数学题. 这里博主用了一种比较暴力的思想,直接枚举以$1\thick…
题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum 输入输出样例 输入样例#1: 2 输出样例#1: 5 说明 数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000 分析:求sum我们不可能把所有gcd全部求出来,但是有很多一样的gcd,因此我们可以统计每个gcd的个数,如gcd=k的倍数的…
题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f[i]=g[i]-f[2i]-f[3i]-f[4i]-...... #include <bits/stdc++.h> #define int long long using namespace std; ]; signed main() { int n; cin>>n; ; ;i--)…
P2398 GCD SUM一开始是憨打表,后来发现打多了,超过代码长度了.缩小之后是30分,和暴力一样.正解是,用f[k]表示gcd为k的一共有多少对.ans=sigma k(1->n) k*f[k].g[k]表示f[k]+f[2*k]+...+f[(n/k)*k];so f[k]=g[k]-(f[2*k]+...+f[(n/k)*k])g[k]=(n/k)*(n/k)比如g[5] (5,5,10,15..20)复杂度是调和级数 nlnn #include<iostream> #incl…
题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 解析 给出n求sum. gcd(x,y)表示x,y的最大公约数. 直接枚举复杂度为\(O(n^2)\),显然无法承受. 我们需要寻找更优的算法. 首先,打表找规律,当\(n=10\)时,是这样的 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 1 3 1 1 3 1 1 3 1 1 2 1 4 1 2 1 4 1 2 1 1 1 1 5 1 1 1 1 5 1 2 3 2…
GCD SUM Time Limit: 8000/4000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others) SubmitStatisticNext Problem Problem Description 给出N,M执行如下程序:long long  ans = 0,ansx = 0,ansy = 0;for(int i = 1; i <= N; i ++)   for(int j = 1; j <= M; j ++)     …
GCD SUM Time Limit: 8000/4000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) SubmitStatus Problem Description 给出N,M执行如下程序:long long  ans = 0,ansx = 0,ansy = 0;for(int i = 1; i <= N; i ++)   for(int j = 1; j <= M; j ++)       if(gcd(i,j)…
Luogu2398 GCD SUM 求 \(\displaystyle\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\) \(n\leq10^5\) 数论 先常规化式子(大雾 \[\displaystyle\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\\=\displaystyle\sum_{k=1}^n\sum_{i=1}^n\sum_{j=1}^n{\ k\times[\gcd(i,j)=k]}\\=\displaystyle\sum_{k=1}^n…
题目:GCD SUM 题目链接:http://www.bnuoj.com/v3/problem_show.php?pid=39872 算法:莫比乌斯反演.优化 #include<stdio.h> #define N 100001 typedef long long LL; }; ; int mu[N]; LL f[N],ff[N]; //缩短时间 /* 莫比乌斯函数mu[i]的定义: 1. 如果 i 是素数,那么mu[i]为-1; 2. 如果 i 是由多个不同的素数组成的,那么mu[i]为-1…
GCD SUM 求 \[\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j) \] 将原式变换得到 \[\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}[\gcd(i,j)=1] \] 别着急莫比乌斯反演,我们知道 \[\varphi(n)=\sum_{i=1}^n[\gcd(i,n)=1] \] 所以原式可化为 \[\sum_{d=1}^nd\sum_…
题目大意:求 \[\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)\] 题解: 最重要的一步变换在于. \[\sum\limits_{k=1}^n k \sum\limits_{d=1}^{\lfloor{n\over k}\rfloor}\mu(d)\lfloor{n\over kd}\rfloor\lfloor{n\over kd}\rfloor\] 令 \[t = kd\],枚举 \(t\) 得 \[\sum\limits_{t=1}^n\lfl…
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表示a[1]..a[n]. 以下m行,每行2个整数表示询问区间的左右端点. 保证输入数据合法. 输出格式 共m行,每行表示一个询问的答案. 输入输出样例 输入样例#1: 5 3 4 12 3 6…
题目描述 给定一行n个正整数a[1]..a[n].m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m.第二行n个整数表示a[1]..a[n].以下m行,每行2个整数表示询问区间的左右端点.保证输入数据合法. 输出格式: 共m行,每行表示一个询问的答案. 输入输出样例 输入样例#1: 5 3 4 12 3 6 7 1 3 2 3 5 5 输出样例#1: 1 3 7 说明 对于30%的数据,n <= 100, m <=…
/* 可以得a>=c,b<=d,枚举d的质因子p 那么a,b,c,d,x中包含的p个数是ma,mb,mc,md,mx 在gcd(a,x)=c中 ma<mc => 无解 ma=mc => mx>=mc ma>mc => mx=mc 在lcm(b,x)=d中 mb<md => mx=md mb=md => mx<=md mb>md => 无解 那么 ma==mc且mb==md时,mc<=mx<=md ma>m…
题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表示a[1]..a[n]. 以下m行,每行2个整数表示询问区间的左右端点. 保证输入数据合法. 输出格式: 共m行,每行表示一个询问的答案. 输入输出样例 输入样例#1: 5 3 4 12 3 6 7 1 3 2 3 5 5 输出样例#1: 1 3 7 说明 对于30%的数据,n <= 100, m…
P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表示a[1]..a[n]. 以下m行,每行2个整数表示询问区间的左右端点. 保证输入数据合法. 输出格式: 共m行,每行表示一个询问的答案. 输入输出样例 输入样例#1: 复制 5 3 4 12 3 6 7 1 3 2 3 5 5 输出样例#1: 复制 1 3 7 说明 对于3…
U4858 sum 题目提供者666sb666 最新讨论 题目背景 定义一个序列的价值为序列中相邻元素差的绝对值之和. 如序列{2,1,3}的价值为|2-1|+|1-3|=3,而序列{4}的价值为0. 题目描述 现对于一给定序列,求价值最大的子序列的数量. 保证原序列中相邻的两个数不同. 注意:子序列不用连续 输入输出格式 输入格式: 第一行一个正整数n,表示序列中元素的个数. 接下来n行,每行一个数表示序列中的一个元素. 输出格式: 一个数表示数量.答案对1000000007取模. 输入输出样…
P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表示a[1]..a[n]. 以下m行,每行2个整数表示询问区间的左右端点. 保证输入数据合法. 输出格式: 共m行,每行表示一个询问的答案. 输入输出样例 输入样例#1: 5 3 4 12 3 6 7 1 3 2 3 5 5 输出样例#1: 1 3 7 说明 对于30%的数据,…
UVA11388 GCD LCM Description of the title PDF The GCD of two positive integers is the largest integer that divides both the integers without any remainder. The LCM of two positive integers is the smallest positive integer that is divisible by both th…
题目地址 题目链接 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum 输入输出样例 输入样例#1: 复制 2 输出样例#1: 复制 5 说明 数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000 题解 这东西其实就是\(\large\sum_{i=1}^n\sum_{j=1}^ngcd(i…
题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum 输入输出样例 输入样例#1: 2 输出样例#1: 5 说明 数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000 题目的意思大概是这样的 O(n2)枚举当然是不行的啦. 考虑枚举k,求gcd为k的“数对”的个数. 而可以证明gcd为k的“数…
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MB Submit: 1871 Solved: 1172 [Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp…
#include<bits/stdc++.h> #define int long long using namespace std; ; int phi[maxn]; int prime[maxn]; int visit[maxn]; ; int num[maxn]; int ans[maxn]; void build_phi(int n) { phi[]=; ;i<=n;i++) { if(!visit[i]) { prime[++tot]=i; phi[i]=i-; } ;j<…
快考试了,把我以前写过的题回顾一下.Noip2007 树网的核:floyd,推出性质,暴力.Noip2008 笨小猴:模拟Noip2008 火柴棒等式:枚举Noip2008 传纸条:棋盘dpNoip2008 双栈排序:将复杂条件转化为简单约束,二分图染色判断可行性,模拟.Noi2010 能量采集:常见套路,求:ΣΣgcd(i,j),设t = gcd(i,j),能算出gcd=t的点对有(n/t) * (m/t)个,然后利用容斥原理减去2t,3t,……,kt的,倒序枚举.Noip2009 潜伏者:模…
洛谷 这大概是我见过最水的紫题吧- 洛谷标签赞一个! 题意:你有一年时间,把10w元存银行变成更多钱,在特定时间区间内,你会有一些利息,不过不可中途退出. 直接dp:st[i]表示区间左端点,ed[i]表示右端点,a[i]表示利率. f[i]表示第i天的最大值.直接循环每天和每个套餐转移即可. code: #include <bits/stdc++.h> using namespace std; const int month[]={0,0,31,59,90,120,151,181,212,2…
P1291 百事世界杯之旅 题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶快行动!” 你关上电视,心想:假设有n个不同的球星名字,每个名字出现的概率相同,平均需要买几瓶饮料才能凑齐所有的名字呢? 输入输出格式 输入格式: 整数n(2≤n≤33),表示不同球星名字的个数. 输出格式: 输出凑齐所有的名字平均需要买的饮料瓶数.如果是一个整数,则直接…
题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0.G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖.设计一个有效算法求一个有向无环图G 的最小路径覆盖.提示:设V={1,2,.... ,n},构造网络G1=(V1,E1)如下: 每条边的容量均为1.求网络G1的( 0 x , 0 y )最大流. «编程任务:…
P1948 [USACO08JAN]电话线Telephone Lines 题目描述 Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncooperative, so he needs to pay for some of the cables required to connect his farm to the phone system. There a…