DP动态规划之01背包问题】的更多相关文章

目录 问题描述 问题分析 问题求解 Java代码实现 优化方向一:时间方面:因为是j是整数是跳跃式的,可以选择性的填表. 思考二:处理j(背包容量),w(重量)不为整数的时候,因为j不为整数了,它就没办法作为数组下标使用. 总结 问题描述 有n个物品,第i种物品的价值为\(p_i\)重量为\(W_i\),选一些物品到一个容量为C的背包里,使得背包内物品在总重量不超过C的前提下,价值尽量大. 问题分析  在之前我们了解贪心思想的时候曾经有过类似的题目那时候物品是可拆分的我们只需要选择单位重量最大的…
2017-08-12 18:50:13 writer:pprp 对于最基础的动态规划01背包问题,都花了我好长时间去理解: poj3624是一个最基本的01背包问题: 题意:给你N个物品,给你一个容量为M的背包 给你每个物品的重量,Wi 给你每个物品的价值,Di 求解在该容量下的物品最高价值? 分析: 状态: dp[i][j] = a 剩下i件 当前容量为j的情况下的最大价值为a 如果用 i 来枚举物品编号, 用 j 来枚举重量,那么 if ( j is from 1 to weight[i]…
问题描述: 给定n种物品和一背包.物品i的重量是wi,其价值为vi,背包的容量为C.问:应该如何选择装入背包的物品,是的装入背包中物品的总价值最大? 细节须知: 暂无. 算法原理: a.最优子结构性质 0-1背包问题具有最优子结构性质.设(y1,y2,…,yn)是所给0-1背包问题的一个最优解,则(y2,…,yn)是下面相应子问题的一个最优解. b.递归关系 设所给0-1背包问题的子问题 的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值…
我以此题为例,详细分析01背包问题,希望该题能够为大家对01背包问题的理解有所帮助,对这篇博文有什么问题可以向我提问,一同进步^_^ 饭卡 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 14246    Accepted Submission(s): 4952 Problem Description 电子科大本部食堂的饭卡有一种很诡异的…
49-开心的小明 内存限制:64MB 时间限制:1000ms Special Judge: No accepted:7 submit:11 题目描述: 小明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N 元钱就行”.今天一早小明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N 元.于是,他把每件物品规定了一个重要度,分为5 等:用整数1~5 表示,第5 等最重要…
...通过暴力手推得到的一点点感觉 动态规划是相对于贪心算法的一种取得最优解的算法,通过对每一步的取舍判断从 0 推到所拥有的第 n 件物品,每次判断可以列写出状态转移方程,通过记忆化相对暴力地取得最优解,如果有 n 件物品,容量为 m 的背包,则时间复杂度为 O(n*m) 状态转移方程如下: ;i<=n;i++) ;j<=m0;j++) { if(j>=w[i]) { dp[i][j]=max(dp[i-][j-w[i]]+v[i],dp[i-][j]); } else { dp[i]…
链接:https://ac.nowcoder.com/acm/contest/993/C来源:牛客网题意:n头牛,给出它们的H高度,问这些牛的高度叠加起来大于等于书架高度,问叠加后的高度与书架的差值最小为多少? 1解法:01背包容量枚举从书架高度到所有牛高度总和的高度,遍历从书架高度容量开始,取可满足容量的最小值.   //#include <bits/stdc++.h>#include <cstdio>#include <cstring>#include <cm…
题目: 有n件物品和一个容量为C的背包.(每种物品均仅仅有一件)第i件物品的体积是v[i],重量是w[i].选一些物品装到这个背包中,使得背包内物品在整体积不超过C的前提下重量尽量大. 解法:两种思路: 第一种:d(i, j)表示"把第i,i+1,i+2,...n个物品装到容量为j的背包中的接下来的最大总重量". d(i, j) = max{d(i+1, j), d(i+1, j-v[i])+w[i]}     前面一项表示不放第i个物品,后面一项表示放第i个物品. 然后取两者之中最大…
先上代码 b站讲解视频 灯神讲背包 #include <iostream> #include <cstring> #include <algorithm> using namespace std; const int N = 1010; // 规模 int n, m; // n为件数 m为背包总容量 int f[N][N]; int v[N], w[N]; // 体积v 和 价值w int main() { cin >> n >> m; for…
动态规划求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 动态规划核心:计算并存储小问题的最优解,并将这些最优解组合成大问题的最优解.(将原问题分解为若干子问题,然后自底向上,先求解最小的子问题,把结果存储在表格中,再求解大的子问题时,直接从表格中查询小的子问题的解,避免重复计算,从而让提高算法效率) 解决本问题思路:对于第 i 个物品,放入后可以取得最大的价值,那么,前 i-1 个物品在背包容量为 w-…
题目链接:http://poj.org/problem?id=3624 1.p[i][j]表示,背包容量为j,从i,i+1,i+2,...,n的最优解. 2.递推公式 p[i][j]=max(p[i+1][j],p[i+1][j-w[i]]+v[i]); #include <stdio.h> #include <algorithm> #include <string.h> #define NUM 3410 //物品数量的上限 #define CAP 1300 //背包容…
问题描述: Eva loves to collect coins from all over the universe, including some other planets like Mars. One day she visited a universal shopping mall which could accept all kinds of coins as payments. However, there was a special requirement of the paym…
两天的时间都在学习动态规划:小作业(01背包问题:) 数据结构老师布置的这个小作业还真是让人伤头脑,自己实在想不出来了便去网上寻找讲解,看到一篇不错的文章: http://www.cnblogs.com/sdjl/articles/1274312.html -------通过金矿模型介绍动态规划 但是---------------------------------------- 两天的时间才完成这个lab 总结:1.思维思路要清晰.2.题目信息要看清楚.3.改代码过程中注意小变量的数值是否同步…
01背包问题(动态规划)python实现 在01背包问题中,在选择是否要把一个物品加到背包中.必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比較,这样的方式形成的问题导致了很多重叠子问题,使用动态规划来解决.n=5是物品的数量,c=10是书包能承受的重量,w=[2,2,6,5,4]是每一个物品的重量,v=[6,3,5,4,6]是每一个物品的价值,先把递归的定义写出来: 然后自底向上实现,代码例如以下: def bag(n,c,w,v): res=[[-1 for j in range…
01背包问题之2 有n个物品,重量和价值分别为wi和vi,从这些物品中挑选出重量不超过W的物品,求所有挑选方案中物品价值总和的最大值 限制条件: 1 <= n <= 100; 1 <= wi<= 10^7; 1 <= vi <= 100; 1 <= W <= 10^9; 分析:数据量更大,之前求解该问题的时间复杂度为o(nW),在这一问题来说会超时,在这个问题里重量很大,但是价值很小,可以考虑价值,改变dp的对象,针对不同的价值来计算最小的质量 因为是求最小…
有n个物品,重量和价值分别为wi和vi,从这些物品中挑选出重量不超过W的物品,求所有挑选方案中物品价值总和的最大值 限制条件: 1 <= n <= 100; 1 <= wi,vi <= 100; 1 <= W <= 10000; 分析:经典的01背包问题 状态:dp[i][j] = 前i个物品中挑选重量不超过j的价值最大值 状态转移方程:dp[i+1][j] = max(dp[i][j], dp[i][j - w[i]] + v[i]); 利用翻滚数组即一维数组可以大大…
对于普通的01背包问题,如果修改限制条件的大小,让数据范围比较大的话,比如相比较重量而言,价值的范围比较小,我们可以试着修改dp的对象,之前的dp针对不同的重量限制计算最大的价值.这次用dp针对不同的价值计算最小的重量. 定义dp[i+1][j],前i个物品中挑选出价值总和为j时总重量的最小值(不存在时就是一个充分大的数值INF).由于前0个物品中什么都挑选不了,所以初值为: dp[0][0]=0; dp[0][j]=INF; 此外,前i个物品中挑选出价值总和为j时,一定有 前i-1个物品中挑选…
1068 Find More Coins (30 分)   Eva loves to collect coins from all over the universe, including some other planets like Mars. One day she visited a universal shopping mall which could accept all kinds of coins as payments. However, there was a special…
中文理解: 0-1背包问题:有一个贼在偷窃一家商店时,发现有n件物品,第i件物品价值vi元,重wi磅,此处vi与wi都是整数.他希望带走的东西越值钱越好,但他的背包中至多只能装下W磅的东西,W为一整数.应该带走哪几样东西?这个问题之所以称为0-1背包,是因为每件物品或被带走:或被留下:小偷不能只带走某个物品的一部分或带走同一物品两次. 在分数(部分)背包问题(fractional knapsack problem)中,场景与上面问题一样,但是窃贼可以带走物品的一部分,而不必做出0-1的二分选择.…
[问题描述] 0-1背包问题:有 N 个物品,物品 i 的重量为整数 wi >=0,价值为整数 vi >=0,背包所能承受的最大重量为整数 C.如果限定每种物品只能选择0个或1个,求可装的最大价值. 可以用公式表示为:  [算法思路] 动态规划法.我们可以想到这个问题具有最优子结构性质,假设(x1,x2,...,xn)是最优解,那么在去除x1之后,剩下(x2,...,xn)肯定是以下问题的最优解: 根据这个特征可以设计DP函数并推出递归关系.具体地,m(i,j)是背包容量为j,可选择物品为i,…
按小蓝书上写的大数据情况下没过,按解答区一个大佬的修改了过了 #include <bits/stdc++.h> using namespace std; class Solution { public: /** * 代码中的类名.方法名.参数名已经指定,请勿修改,直接返回方法规定的值即可 * 计算01背包问题的结果 * @param V int整型 背包的体积 * @param n int整型 物品的个数 * @param vw int整型vector<vector<>>…
背包问题是动态规划中的经典问题,而01背包问题是最基本的背包问题,也是最需要深刻理解的,否则何谈复杂的背包问题. POJ3624是一道纯粹的01背包问题,在此,加入新的要求:输出放入物品的方案. 我们的数组基于这样一种假设: totalN表示物品的种类,totalW表示背包的容量 w[i]表示第i件物品的重量,d[i]表示第i件物品的价值. F(i,j)表示前i件物品放入容量为j的背包中,背包内物品的最大价值. F(i,j) = max{ F(i-1,j) , F(i-1,j-w[i])+d[i…
题意:中文的吧,飘过~ 析:学过DP的都应该感觉到是动态规划吧,就是一个01背包问题,不同的是,这个题又加入一些新的条件,就是不满5元不能消费,过了5元即使超了也行(这个学校真不错,都可以预支),最后让你求剩下最少的金额(可以是负的),根据贪心我们应该知道最后一个买最贵的,为什么呢,如果在前面就先取了最贵的,那么剩余金额到快接近或者等于为5元时,然后再买一个肯定比不上,最后快接近或者等于5元时,再买那个最贵的剩下的少,当然还有一种情况就是买完所有的东西后,仍然大于或者等于5元,那么最后买最贵的和…
先来看一下经典的背包问题吧 http://www.cnblogs.com/Kalix/p/7617856.html  01背包问题 https://www.cnblogs.com/Kalix/p/7622102.html 完全背包问题 https://blog.csdn.net/mystery_guest/article/details/51878140      多重背包二进制优化 1.https://cn.vjudge.net/problem/12304/origin    POJ 3176…
解题心得: 这题就是一个简单的0-1背包问题,只不过加了一系列的限制.可以想办法消去限制,直接转换成0-1背包问题的模板形式. 需要注意的几个点:首先对于剩余的5元钱的处理可以直接在总的钱数上将5减去,然后处理大于零的(将特殊化为一般),需要排一个序,方便操作.第二点,最后得出的答案应该是大于5的(之前减了5),所以最后的答案减去一个最大的数就是最小的结果. 主要运用的是一个贪心的思想,将最贵的那个菜去掉和总金额减去5然后再动态规划,规划完毕之后在加上5减去最贵的那个菜就是余额显示最小的结果.…
dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间效率高,代码量少,多元性强,主要考察思维能力.建模抽象能力.灵活度. ****************************************************************************************** 动态规划(英语:Dynamic programm…
0-1背包问题描述:一个正在抢劫商店的小偷发现了n个商品,第i个商品价值 vi 美元,重 wi 磅,vi 和 wi 都是整数.这个小偷希望拿走价值尽量高的商品,但他的背包最多能容纳 S 磅重的商品,S 是一个整数,那么他应该如何拿才能使得背包中的商品价值之和最大. 0-1背包问题的特点在于这类问题只能做出二元选择,比如上面描述的问题中每个商品不可拆分,小偷要么把它拿走,要么把它留下:不能拿走商品的一部分.所以有可能最后结果小偷的背包还有多余的空间,但却不能再多放商店的商品了.这也是使用动态规划求…
问题 B: [动态规划]简单背包问题II 时间限制: 1 Sec  内存限制: 64 MB提交: 21  解决: 14[提交][状态][讨论版] 题目描述 张琪曼:“为什么背包一定要完全装满呢?尽可能多装不就行了吗?” 李旭琳:“你说得对,这和墨老师曾告诉我们的‘日中则昃,月满则亏’是一个道理.”所以,现在的问题是,她们有一个背包容量为v(正整数,0≤v≤20000),同时有n个魔法石(0≤n≤30),每个魔法石有一个体积 (正整数).要求从n个魔法石中,任取若干个装入包内,使背包的剩余空间为最…
Charm Bracelet    POJ 3624 就是一道典型的01背包问题: #include<iostream> #include<stdio.h> #include<algorithm> #include<string.h> using namespace std; ],b[]; ]; int main() { int n,m,i,j; while(scanf("%d%d",&n,&m)!=EOF) { ;i&l…
B - 最大报销额 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1864 Appoint description: Description 现有一笔经费可以报销一定额度的发票.允许报销的发票类型包括买图书(A类).文具(B类).差旅(C类),要求每张发票的总额不得超过1000元,每张 发票上,单项物品的价值不得超过600元.现请你编写…