/ 20220404 Week 1 - 2 / Chapter 1 - Introduction 1.1 Definition Arthur Samuel The field of study that gives computers the ability to learn without being explicitly programmed. Tom Mitchell A computer program is said to learn from experience E with re…
最近开源了周志华老师的西瓜书<机器学习>纯手推笔记: 博士笔记 | 周志华<机器学习>手推笔记第一章思维导图 [博士笔记 | 周志华<机器学习>手推笔记第二章"模型评估与选择" 博士笔记 | 周志华<机器学习>手推笔记第三章"线性模型" 博士笔记 | 周志华<机器学习>手推笔记第四章"决策树" 博士笔记 | 周志华<机器学习>手推笔记第五章"神经网络" 博…
参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 两层神经网络,和吴恩达课后作业学习1-week3-homework-one-hidden-layer——不发布不同之处在于使用的函数不同线性->ReLU->线性->sigmod函数,训练的数据也不同,这里训练的是之前吴恩达课后作业学习1-week2-homework-logistic中的数据,判断是否为猫,查看使用…
这是Coursera上比较火的一门机器学习课程,主讲教师为Andrew Ng.在自己看神经网络的过程中也的确发现自己有基础不牢.一些基本概念没搞清楚的问题,因此想借这门课程来个查漏补缺.目前的计划是先看到神经网络结束,后面的就不一定看了. 当然,看的过程中还是要做笔记做作业的,否则看了也是走马观花.此笔记只针对我个人,因此不会把已经会了的内容复述一遍,相当于是写给自己的一份笔记吧.如果有兴趣,可以移步<Machine Learning>仔细学习. 接下来是第一周的一些我认为需要格外注意的问题.…
强烈安利吴恩达老师的<Machine Learning>课程,讲得非常好懂,基本上算是无基础就可以学习的课程. 课程地址 强烈建议在线学习,而不是把视频下载下来看.视频中间可能会有一些问题让你回答,这种互动的方式挺好的. 然后由于我个人的笔记是做在Onenote的笔记本里的,公式输入方法和markdown还是蛮不一样的,就不把自己的笔记放在博客里了.(而且感觉自己在瞎做) 最后强烈安利另外一位朋友的笔记.有word版,markdown版,pdf版,html版等等,业界良心!…
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weixin.qq.com/s/cX9_DiqofPhdXrY_0oTEAw 课程1 - 神经网络和深度学习 周数 名称 类型 地址 week1 深度学习简介 测验 略 week2 神经网络基础 笔记 逻辑回归 逻辑回归推导 具有神经网络思维的Logistic回归 编程作业 识别猫 week3 浅层神经网络…
我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)[中英双语] 视频地址:https://www.bilibili.com/video/av9912938/ tensorflow:http://tensorflow123.com…
前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM 本文可以解答: RNN用来解决什么问题,什么样的数据特征适合用它来解决 ​RNN的缺陷是什么,LSTM,GRU是如何…
本篇文章被Google中国社区组织人转发,评价: 条理清晰,写的很详细! 被阿里算法工程师点在看! 所以很值得一看! 前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM…
之前经学长推荐,开始在B站上看Andrew Ng的机器学习课程.其实已经看了1/3了吧,今天把学习笔记补上吧. 吴恩达老师的Machine learning课程共有113节(B站上的版本https://www.bilibili.com/video/av9912938).这篇学习笔记是结合第一.二部分(我所理解的): 第一部分:概览机器学习,介绍其中的一些专业名词及定义.Section 1-26 第二部分:如何使用Octave实现机器学习中的基本算法(Ocatave就是开源版的Matlab).Se…