前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
前言 本文介绍机器学习分类算法中的K-近邻算法并给出伪代码与Python代码实现. 算法原理 首先获取训练集中与目标对象距离最近的k个对象,然后再获取这k个对象的分类标签,求出其中出现频数最大的标签. 而这个标签,就是分类的结果. 伪代码 对训练集做以下操作: 1. 计算训练集中各点与当前点之间的距离(本文采用最经典的欧式距离) 2. 按照距离递增次序对各点排序 3. 选取与当前点距离最小的k个点 4. 确定前k个点所在类别的出现频率 5. 返回前k个点出现频率最高的类别,即为分类结果. 特别说…
1.什么是logistic回归? logistic回归虽然说是回归,但确是为了解决分类问题,是二分类任务的首选方法,简单来说,输出结果不是0就是1 举个简单的例子: 癌症检测:这种算法输入病理图片并且应该辨别患者是患有癌症(1)或没有癌症(0) 2.logistic回归和线性回归的关系 逻辑回归(Logistic Regression)与线性回归(Linear Regression)都是一种广义线性模型(generalized linear model). 逻辑回归假设因变量 y 服从二项分布,…
前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文将讲解关联分析领域中最为经典的Apriori算法,并给出具体的代码实现. 关联分析领域的一些概念 1. 频繁项集: 数据集中经常出现在一起的物品的集合.例如 "啤酒和尿布" 2. 关联规则: 指两个物品集之间可能存在很强的关系.例如 "{啤酒} -> {尿布}"…
前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文将讲解关联分析领域中最为经典的Apriori算法,并给出具体的代码实现. 关联分析领域的一些概念 1. 频繁项集: 数据集中经常出现在一起的物品的集合.例如 "啤酒和尿布" 2. 关联规则: 指两个物品集之间可能存在很强的关系.例如 "{啤酒} -> {尿布}"…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经典的聚类问题展开讨论.所谓聚类,就是事先并不知道具体分类方案的分类 (允许知道分类个数). 本文将介绍一个最为经典的聚类算法 - K-Means 聚类算法以及它的两种实现. 现实中的聚类分析问题 - 总统大选 假设 M 国又开始全民选举总统了,目前 Mr.OBM 的投票率为48%(投票数占所有选民人数的百分比…
Lineage逻辑回归分类算法 线性回归和逻辑回归参考文章: http://blog.csdn.net/viewcode/article/details/8794401 http://www.cnblogs.com/jerrylead/archive/2011/03/05/1971867.html 1.概述 Lineage逻辑回归是一种简单而又效果不错的分类算法 什么是回归:比如说我们有两类数据,各有50十个点组成,当我门把这些点画出来,会有一条线区分这两组数据,我们拟合出这个曲线(因为很有可能…
本次Octave仿真解决的问题是,根据两门入学考试的成绩来决定学生是否被录取,我们学习的训练集是包含100名学生成绩及其录取结果的数据,需要设计算法来学习该数据集,并且对新给出的学生成绩进行录取结果预测. 首先,我们读取并绘制training set数据集: %% Initialization clear ; close all; clc %% Load Data % The first two columns contains the exam scores and the third col…