Kaggle实战之一回归问题】的更多相关文章

0. 前言 1.任务描述 2.数据概览 3. 数据准备 4. 模型训练 5. kaggle实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题." 本系列参考书籍 "Hands-on machine learning with scikit-learn and tensorflow"以及kaggle相关资料 1.任务描述 预测任务:根据某时刻房价相关数据,预测区域内该时刻任一街区的平均房价,决定是否对投资该街区的房子.…
本篇博客是基于以Kaggle中手写数字识别实战为目标,以KNN算法学习为驱动导向来进行讲解. 写这篇博客的原因 什么是KNN kaggle实战 优缺点及其优化方法 总结 参考文献 写这篇博客的原因 写下这篇博客,很大程度上是希望能记录和督促自己学习机器学习的过程,同时也在以后的学习生活中,可以将以前的博客翻来看看,重新回顾知识. 什么是KNN? 在模式识别和机器学习中,k-近邻算法(以下简称:KNN)是一种常用的监督学习中分类方法.KNN可以说是机器学习算法中最简单的一个算法,我希望它能带领大家…
0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题." 本系列参考书 "Hands-on machine learning with scikit-learn and tensorflow"以及kaggle相关资料 1. MNIST 数据集 MNIST是最常用的用来实验分类模型的数据集,有7w多张手写0…
Kaggle实战之二分类问题 0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 “尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手头 90% 的机器学习问题.” 本系列参考书 "Hands-on machine learning with scikit-learn and tensorflow"以及kaggle相关资料 1. MNIST 数据集 MNIST是最常用的用来实验分类模型的数据集,有7w…
目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid函数分类 4.2 基于最优化方法的最佳回归系数确定 4.2.1 梯度上升算法: 4.2.2 测试算法:使用梯度上升算法找到最佳参数 4.2.3 分析数据:画出决策边界 4.2.4 训练算法:随机梯度上升 4.3 示例1:从疝气病症预测病马的死亡率 4.4 示例2:从打斗数和接吻数预测电影类型(数据自…
https://mlnote.wordpress.com/2015/12/16/python%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%AE%9E%E8%B7%B5%E4%B8%8Ekaggle%E5%AE%9E%E6%88%98-machine-learning-for-kaggle-competition-in-python/ Author: Miao Fan (范淼), Ph.D. candidate on Computer Science. Affil…
https://blog.csdn.net/chengcheng1394/article/details/78940565 原创文章,转载请注明出处: http://blog.csdn.net/chengcheng1394/article/details/78940565 请安装TensorFlow1.0,Python3.5 项目地址: https://github.com/chengstone/kaggle_criteo_ctr_challenge- 前言点击率预估用来判断一条广告被用户点击的…
Logistics回归:实战,有两个特征X0,X1.100个样本,进行Logistics回归 1.导入数据 def load_data_set(): """ 加载数据集 :return:返回两个数组,普通数组 data_arr -- 原始数据的特征 label_arr -- 原始数据的标签,也就是每条样本对应的类别 """ data_arr=[] label_arr=[] f=open('TestSet.txt','r') for line in…
date:2016-09-13 今天开始注册了kaggle,从digit recognizer开始学习, 由于是第一个案例对于整个流程目前我还不够了解,首先了解大神是怎么运行怎么构思,然后模仿.这样的学习流程可能更加有效,目前看到排名靠前的是用TensorFlow.ps:TensorFlow是可以直接安linux环境下面,但是目前不能在windows环境里面运行(伤心一万点). TensorFlow模块用的是NN(神经网络),既然现在接触到可以用神经网络的例子我再也不好意思再逃避学习神经网络下面…
基于LR的回归分类实例 概念 前提理解: 机器学习的三个步骤:模型,损失函数(即样本误差),优化求解(通过损失函数,使得模型的样本误差最小或小于阈值,求出满足条件的参数,优化求解包括:最小二乘法,梯度下降). 链接1:简析python3深浅复制与赋值 https://cloud.tencent.com/developer/news/53299 Python3中赋值操作其实是对象的引用,相当于起了个别名,赋值关系,即整个内外层对象的引用,内外层都指向同一内存. :SGD详解 https://www…
文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本文采用PCA+KNN的方法进行kaggle手写数字识别,训练数据共有42000行,每行代表一幅数字图片,共有784列(一副数字图像是28*28像素,将一副图像展开为一行即784),更多关于Digit Recognizer项目的介绍https://www.kaggle.com/c/digit-recogniz…
原文:https://hippocampus-garden.com/kaggle_colab/ 原文标题:How to Kaggle with Colab Pro & Google Drive 译文作者:kbsc13 联系方式: Github:https://github.com/ccc013/AI_algorithm_notes 知乎专栏:机器学习与计算机视觉,AI 论文笔记 微信公众号:AI 算法笔记 前言 Colab Pro(目前仅在美国.加拿大.日本.巴西.德国.法国.印度.英国和泰国可…
#encoding:utf-8 from numpy import * def loadDataSet(): #加载数据 dataMat = []; labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) labelMat.append(i…
# -*- coding: utf-8 -*- """ Created on Sun Aug 06 15:57:18 2017 @author: mdz """ '''http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=9162199&id=4223505''' import numpy as np #读取数据 def loadDataSet(): dataList=[]…
http://www.cnblogs.com/kobedeshow/p/4118361.html…
文章目录 Tensorflow 官方示例 CNN 提交结果 Tensorflow 官方示例 import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.ke…
由于编辑器总是崩溃,我只能直接把代码贴上了. import numpy #first step import pandas as pd import numpy as np # Read data from files #这三行的目的就是读入文件,pd.read_csv()这个API里面参数还是比较多的,可以查阅官方文档 #人工标记过的训练数据 train = pd.read_csv( "data/labeledTrainData.tsv", header=0, delimiter=&…
学完了Coursera上Andrew Ng的Machine Learning后,迫不及待地想去参加一场Kaggle的比赛,却发现从理论到实践的转变实在是太困难了,在此记录学习过程. 一:安装Anaconda 教程大多推荐使用Jupyter Notebook来进行数据科学的相关编程,我们通过Anaconda来安装Jupyter Notebook和需要用到的一些python库,按照以下方法重新安装了Anaconda,平台Win10 Anaconda安装 二:Jupyter Notebook 参照以下…
学习了机器学习这么久,第一次真正用机器学习中的方法解决一个实际问题,一步步探索,虽然最后结果不是很准确,仅仅达到了0.78647,但是真是收获很多,为了防止以后我的记忆虫上脑,我决定还是记录下来好了. 1,看到样本是,查看样本的分布和统计情况 #查看数据的统计信息print(data_train.info())#查看数据关于数值的统计信息print(data_train.describe()) 通常遇到缺值的情况,我们会有几种常见的处理方式 如果缺值的样本占总数比例极高,我们可能就直接舍弃了,作…
学完了Coursera上Andrew Ng的Machine Learning后,迫不及待地想去参加一场Kaggle的比赛,却发现从理论到实践的转变实在是太困难了,在此记录学习过程. 一:安装Anaconda 教程大多推荐使用Jupyter Notebook来进行数据科学的相关编程,我们通过Anaconda来安装Jupyter Notebook和需要用到的一些python库,按照以下方法重新安装了Anaconda,平台Win10 Anaconda安装 二:Jupyter Notebook 参照以下…
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的mat…
为什么有今天这篇? 首先,标题不要太相信,哈哈哈. 本公众号之前已经就人工智能学习的路径.学习方法.经典学习视频等做过完整说明.但是鉴于每个人的基础不同,可能需要额外的学习资料进行辅助.特此,向大家免费发送近300G的人工智能从基础到实战的全系列视频,有需要的可以领取.注意:视频很多,按需观看. 教程说明: 本套教程属于人工智能.机器学习.深度学习.自然语言处理方向的教程,涵盖python基础.python高级教程.大数据.数据分析.数据挖掘.高等数学.概率论统计.算法结构.量化交易.Kaggl…
http://blog.csdn.net/dinosoft/article/details/51813615 前言 对于深度学习,新手我推荐先看UFLDL,不做assignment的话,一两个晚上就可以看完.毕竟卷积.池化啥的并不是什么特别玄的东西.课程简明扼要,一针见血,把最基础.最重要的点都点出来 了. cs231n这个是一个完整的课程,内容就多了点,虽然说课程是computer vision的,但80%还是深度学习的内容.图像的工作暂时用不上,我就先略过了. 突然发现这两个课程都是斯坦福的…
目录 C++逆向 可变参数Hook 0x00 前言: 0x01 C++可变参数: 可变参数简介 可变参数代码实战 0x02 逆向分析C++可变参数原理 0x03 printf Hook实战 Pwn菜鸡学习小分队 C++逆向 可变参数Hook 0x00 前言: 我们在做逆向分析的时候,经常会需要去Hook一个程序的日志输出函数. 而这种日志输出函数一般参数都不确定,这就会引起一个问题.我们如何知道参数个数?如何知道他有哪些参数呢? 0x01 C++可变参数: 可变参数简介 在C++中,可变参数的函…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
--------------------------------------------------------------------------------------- 本系列文章为<机器学习实战>学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正. 源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction -----------------------------------------------…
理论原理部分可以看这一篇:http://www.cnblogs.com/charlesblc/p/6109551.html 这里是实战部分.参考了 http://www.cnblogs.com/shishanyuan/p/4747778.html 采用了三个案例,分别对应聚类.回归和协同过滤的算法. 我觉得很好,需要每一个都在实际系统中试一下. 更多api介绍可以参考 http://spark.apache.org/docs/2.0.1/ml-guide.html 1.1 聚类实例 1.1.1 …
正文:14pt 代码:15px 1 初探数据 先看看我们的数据,长什么样吧.在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据. import pandas as pd #数据分析 import numpy as np #科学计算 from pandas import Series,DataFrame data_train = pd.read_csv("/Users/Hanxiaoyang/Titanic_data/Train.csv") da…
1:简单概念描写叙述 如果如今有一些数据点,我们用一条直线对这些点进行拟合(改线称为最佳拟合直线),这个拟合过程就称为回归.训练分类器就是为了寻找最佳拟合參数,使用的是最优化算法. 基于sigmoid函数分类:logistic回归想要的函数可以接受全部的输入然后预測出类别.这个函数就是sigmoid函数,它也像一个阶跃函数.其公式例如以下: 当中: z = w0x0+w1x1+-.+wnxn,w为參数, x为特征 为了实现logistic回归分类器,我们能够在每一个特征上乘以一个回归系数,然后把…
本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来挑选与相应变量相关的解释变量,可以描述两者的关系,也可以生成一个等式,通过解释变量来预测响应变量. 回归分析的各种变体 回归类型 用途 简单线性 用一个量化的解释变量预测一个量化的响应变量 多项式 用一个量化的解释变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性 用两个或多个量化的解释变量预测一个…