Ramsey theorem in Combinarotics】的更多相关文章

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6152 题意:判定一个无向图是否有三个点的团或者三个点的独立集. 解法:Ramsey theorem,n >= 6 直接输出 Bad 否则暴力.我是直接暴力,加个break优化就好了. #include <bits/stdc++.h> using namespace std; typedef long long LL; const int maxn = 3e3+3; bool w[maxn][…
w https://en.wikipedia.org/wiki/Ramsey's_theorem https://zh.wikipedia.org/wiki/拉姆齐定理 在组合数学上,拉姆齐(Ramsey)定理,又称拉姆齐二染色定理,是要解决以下的问题:要找这样一个最小的数n,使得n个人中必定有 k 个人相识或 l 个人互不相识. 这个定理以弗兰克·普伦普顿·拉姆齐命名,1930年他在论文On a Problem in Formal Logic(<形式逻辑上的一个问题>)证明了R(3,3)=6…
Source: wiki: Parseval's theorem As for signal processing, the power within certain frequency band = the sum of (power spectrum at all frequencies within the frequency band)^2.…
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方法. Cayley-Hamilton theorem: 记矩阵A的特征多项式为f(x). 则有f(A)=0. 证明可以看 维基百科 https://en.wikipedia.org/wiki/Cayley–Hamilton_theorem#A_direct_algebraic_proof 另外我在高…
The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_i in \chi, y_i \in R\) 非负的损失函数: \(J:(\chi \times R^2)^m \to R^+\). 这个符号表示初看挺别扭的, 从wikipedia上抄来的. 含义是\(J\)有\(m \times 3\)个参数, 3代表: 样本\(x_i\) (一个\(\chi\…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Standard Error The standard error of a random variable $X$ is defined by $$SE(X)=\sqrt{E((X-E(X))^2)}$$ $SE$ measures the rough size…
树有很多种形态,给定结点个数,求生成不同形态二叉树的个数,显然要用到Catalan数列. 那如果给定一个图(Graph)\(G=(V,E)\),要求其最小生成树G',最好的方法莫过于Prim或Kruskal了. 上图就是一种求最小生成树的方法. 可要求图G中不同生成树的总个数呢? 这里要用到Kirchhoff's theoreom,一个神奇的定理. 这里只做简单的介绍,并不给出严格的证明. 详细内容请参见Wikipedia::Kirchhoff's theorem 以及芜湖一中 周冬さん的生成树…
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2119 11178 - Morley's Theorem Time limit: 3.000 seconds Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem stat…
Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16733   Accepted: 8427 Description If a and d are relatively prime positive integers, the arithmetic sequence beginning with a and increasing…
Kaushik Sathupadi Programmer. Creator. Co-Founder. Dad. See all my projects and blogs → A plain english introduction to CAP Theorem You’ll often hear about the CAP theorem which specifies some kind of an upper limit when designing distributed systems…
Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2(mod m2) - x≡ak(mod mk) 在0<=<m1m2-mk内有唯一解. 记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有: ei≡0(mod mj),j!=i ei≡1(mod m…
Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below…
Master theorem provides a solution in asymptotic terms to solve time complexity problem of most divide and conquer algorithms. Recurrence relations of the form: T(n) = a T(n/b) + f(n) where a >= 1 and b > 1 Case 1: f(n) = O(nc) where c < logb a T…
Naive Bayes Theorm And Application - Theorem Naive Bayes model: 1. Naive Bayes model 2. model: discrete attributes with finit number of values 2. Parameter density estimation 3. Naive Bayes classification algorithm 4. AutoClass clustering alogrithm \…
Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-s…
Fermat's Chirstmas Theorem Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述 In a letter dated December 25, 1640; the great mathematician Pierre de Fermat wrote to Marin Mersenne that he just proved that an odd prime p is expressible as p…
poj3006 Dirichlet's Theorem on Arithmetic Progressions 很显然这是一题有关于素数的题目. 注意数据的范围,爆搜超时无误. 这里要用到筛选法求素数. 筛选法求素数的大概思路是: 如果a这个数是一个质数,则n*a不是质数.(年轻的孩子们不要纠结于判断a是否为素数) 用一个数组实现就是: memset(prime,true,sizeof(prime)); if (prime[i]) prime[i*j]=false; 部分程序如下: const m…
The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for understanding why statistical inference works. There are at least a handful of problems that require you to invoke the Central Limit Theorem on every ASQ…
Infinite monkey theorem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1702 Accepted Submission(s): 882 Problem Description Could you imaging a monkey writing computer programs? Surely monkeys are…
Ramsey定理 任意6个人中,一定有三个人互为朋友,或者互相不是朋友. 证明 这里我就不证明了.下面链接有证明 鸽巢原理 Ramsey定理 AC代码 #include <stdio.h> #include <algorithm> using namespace std; const int maxn = 3000+5; bool r[maxn][maxn]; int main() { int T, n; scanf("%d", &T); while(T…
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metric \(d\) and the square metric \(\rho\) are the same as the product topology on \(\mathbb{R}^n\). Proof: a) Prove the two metrics can mutually limit ea…
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser than the box topology; these three topologies are all different if \(J\) is infinite. Proof: a) Prove the uniform topology is finer than the product…
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f(a) = (f_{\alpha}(a))_{\alpha \in J}, \] where \(f_{\alpha}: A \rightarrow X_{\alpha}\) for each \(\alpha\). Let \(\prod X_{\alpha}\) have the product…
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topology on \(A \times B\) is the same as the topology \(A \times B\) inherits as a subspace of \(X \times Y\). Comment: To prove the identity of two topo…
(Remark: The proof presented in this post is a reorganization and interpretation of that given by James Munkres in his book "Topology".) Theorem 37.3 (Tychonov Theorem) The product of arbitrary number of compact spaces is compact in the product…
① ②这里用到了极限与不等关系 ③如果a≠b,那么便不会有$\lim _{n\rightarrow \infty }\left| I_n \right| =0$ ④如果还存在一点c在 内,那么同样也不会有$\lim _{n\rightarrow \infty }\left| I_n \right| =0$ 希望深入了解闭区间套定理(Nested intervals theorem),请看讲解2:http://www.cnblogs.com/iMath/p/6260953.html…
确界原理  supremum and infimum principle  戴德金定理  Dedekind theorem http://www.math.ubc.ca/~cass/courses/m446-05b/dedekind-book.pdf#page=15 continulity and irrational numbersthe nature and meaning of numbers…
Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传混了 &代码: #include <bits/stdc++.h> using namespace std; #define INF 0x3f3f3f3f typedef long long ll; const int maxn= 1e3 +7; //蓝书P255 //1.点的定义 stru…
其实是在做题时遇到这个定理的. 这个定理的图论意义是: 对于一个二分图\(G=\{X+Y,E\}\),它满足: \(\forall W \subseteq X, \, |W| \leq |N_G(W)|\) \(\iff\)\(X\)中的每个结点都有匹配. 其中\(N_G(W)\)为图\(G\)中所有与\(W\)相连的结点的集合. 必要性显然. 对于充分性,不会--以后再补充. 由这个定理,我们能得到一个推论: 二分图\(G\)的最大匹配\(M\)等于\(|X| - \max (|W| - |N…