安装matplotlib和seaborn https://blog.csdn.net/Jia_jinjin/article/details/80428598 seaborn pairplot:特征两两对比 参数说明: data:数据. g = sns.pairplot(data) hue:根据指定的特征用不同的颜色显示数据,即指定分类标准.g = sns.pairplot(data, hue="label"),即用lable这个属性来使用不同的颜色进行画图 palette:用调色板的颜…
画频率直方图 import pandas as pd import matplotlib.pyplot as plt Series.value_counts().plot.bar() plt.show() value_counts()的参数说明如下: sort,是否把统计后的次数排序,默认是降序(从大到小) (bool值) ascending,选择降序还是升序. (bool值) dropna,是否要把去掉空值(bool值) normalize,这个就是把出现的频数转化成频率,例如一共有100次,…
Python在数据科学中的地位,不仅仅是因为numpy, scipy, pandas, scikit-learn这些高效易用.接口统一的科学计算包,其强大的数据可视化工具也是重要组成部分.在Python中,使用的最多的数据可视化工具是matplotlib,除此之外还有很多其他可选的可视化工具包,主要包括以下几大类: matplotlib以及基于matplotlib开发的工具包:pandas中的封装matplotlib API的画图功能,seaborn,networkx等: 基于JavaScrip…
前言 前面两篇文章介绍了 python 中两大模块 pandas 和 numpy 的一些基本使用方法,然而,仅仅会处理数据还是不够的,我们需要学会怎么分析,毫无疑问,利用图表对数据进行分析是最容易的,通过图表可以很好地理解数据之间的关联性以及某些数据的变化趋势.因此,将在这篇博客中介绍 python 中可视化工具 matplotlib 的使用. Figure 和 Subplot matplotlib 的图像都位于 Figure 对象中,可以用 plt.figure 创建一个新的 Figure f…
Numpy使用Matplotlib实现可视化绘图 可以直接将Numpy的数组传给Matplotlib实现可视化绘图: 曲线图 饼图 柱状图 直方图 1. 绘制正弦曲线 2. 绘制饼图 3. 柱状图 4. 直方图…
Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时面临的一些挑战,为什么要使用Matplotlib,并推荐了一个学习使用Matplotlib的步骤. 简介 对于新手来说,进入Python可视化领域有时可能会令人感到沮丧.Python有很多不同的可视化工具,选择一个正确的工具有时是一种挑战. 例如,即使两年过去了,这篇<Overview of Python Visualization To…
Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D方面).该项目是由John Hunter于2002年启动的,其目的是为Python构建一个MATLAB式的绘图接口.如果结合Python IDE使用比如PyCharm,matplotlib还具有诸如缩放和平移等交互功能.它不仅支持各种操作系统上许多不同的GUI后端,而且还能将图片导出为各种常见的矢量…
在做完数据分析后,有时候需要将分析结果一目了然地展示出来,此时便离不开Python可视化工具,Matplotlib是Python中的一个2D绘图工具,是另外一个绘图工具seaborn的基础包 先总结下绘制子图的步骤: 1.确定绘制的图形形状(如折线图/条状图/柱状图/饼图/散点图等) 2.填充x/y轴的数据 3.图形细节调整(这里可以做很多调整,如x/y轴文字参数说明,颜色/线粗/柱状粗度,x/y轴文字角度等) 4.显示图像(调用show()) 总结下一个区域同时绘制多个子图的步骤 1.确定绘图…
英文出处:Chris Moffitt. Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表.本文主要介绍了在学习Matplotlib时面临的一些挑战,为什么要使用Matplotlib,并推荐了一个学习使用Matplotlib的步骤. 简介 对于新手来说,进入Python可视化领域有时可能会令人感到沮丧.Python有很多不同的可视化工具,选择一个正确的工具有时是一种挑战. 例如,即使两年过去了,这篇<Overview of Pyt…
1 绘制条形图 import matplotlib # 数据可视化 from matplotlib import pyplot as plt # 配置字体 matplotlib.rcParams["font.sans-serif"] = ["simhei"] # 黑体 matplotlib.rcParams["font.family"] = "sans-serif" ''' left, x轴 height, y轴 width=…