pandas大家用的都很多,像我这种用的不够熟练,也不够多的就只能做做笔记,尽量留下点东西吧. 筛选行: a. 按照列的条件筛选 df = pandas.DataFrame(...) # supposing it has 3 columns: a, b and c df[(df['a'] > 0) & (df['b'] < 0) | df['c'] > 0] b. 按照索引的条件筛选 needed_seq=[1,2,3,6] needed_df = df.loc[needed_s…
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/sinat_38893241/article/details/80414977在<pandas数据框,统计某列数据与其他文件对应关系的个数>之后,我发觉简单版的元素个数统计问题没有说清楚,就在这里介绍两个统计pandas数据框里面列.行元素个数的方法: 代码如下: import pandas as pdimport numpy as np…
本节介绍Series和DataFrame中的数据的基本手段 重新索引 pandas对象的一个重要方法就是reindex,作用是创建一个适应新索引的新对象 ''' Created on 2016-8-10 @author: xuzhengzhu ''' ''' Created on 2016-8-10 @author: xuzhengzhu ''' from pandas import * print "--------------obj result:-----------------"…
This would allow chaining operations like: pd.read_csv('imdb.txt') .sort(columns='year') .filter(lambda x: x['year']>1990) # <---this is missing in Pandas .to_csv('filtered.csv') For current alternatives see: http://stackoverflow.com/questions/11869…