Pandas系列(二)- DataFrame数据框】的更多相关文章

一.初识DataFrame dataFrame 是一个带有索引的二维数据结构,每列可以有自己的名字,并且可以有不同的数据类型.你可以把它想象成一个 excel 表格或者数据库中的一张表DataFrame是最常用的 Pandas 对象. 二.数据框的创建 1.字典套列表方式创建 index = pd.Index(data=["Tom", "Bob", "Mary", "James"], name="name"…
Pandas模块的核心操作对象就是对序列(Series)和数据框(Dataframe).序列可以理解为数据集中的一个字段,数据框是值包含至少两个字段(或序列) 的数据集. 构造序列 1.通过同质的列表或元组构建 2.通过字典构建 3.通过numpy中的一维数组构建 4.通过数据框Dataframe中的某一列构建 例如: import pandas as pdimport numpy as npgdp1 = pd.Series([2.8,3.01,8.99,8.59,5.18])gdp2 = pd…
利用pandas自带的函数notnull可以很容易判断某一列是否为null类型,但是如果这一列中某一格为空字符串"",此时notnull函数会返回True,而一般我们选择非空行并不包括这一点,所以需要把这一类也去掉. # df为需要筛选的数据框,col为选择非空依赖的列 df = df[(df[col].notnull) & (df[col] != "")] 如果数据来源是MySQL数据库,用sql函数调用的时候也要注意相同的问题. SELECT col F…
Pandas 通过 drop 函数删除 DataFrarne 数据,语法为: 例如,删除陈聪明(行标题)的成绩: import pandas as pd datas = [[65,92,78,83,70], [90,72,76,93,56], [81,85,91,89,77], [79,53,47,94,80]] indexs = ["林大明", "陈聪明", "黄美丽", "熊小娟"] columns = ["语文…
pandas大家用的都很多,像我这种用的不够熟练,也不够多的就只能做做笔记,尽量留下点东西吧. 筛选行: a. 按照列的条件筛选 df = pandas.DataFrame(...) # supposing it has 3 columns: a, b and c df[(df['a'] > 0) & (df['b'] < 0) | df['c'] > 0] b. 按照索引的条件筛选 needed_seq=[1,2,3,6] needed_df = df.loc[needed_s…
需要将两个DataFrame进行横向拼接: 对 A_DataFrame 拼接一列数据: 数据样例如下: 将右侧source_df中的 “$factor” 列拼接到左侧qlib_df中,但左侧数据是分钟级的数据,右侧是“day”级的数据. 需要将“day”级数据的 “$factor” 填充到对应一天内的分钟级里面: 首先将二者的日期作为索引: 然后对其进行合并(pd.concat()) source_df = pd.concat([source_df, qlib_df['$factor']], a…
>>> import pandas as pd >>> import numpy as np >>> print(np.__version__), print(pd.__version__) 1.14.3 0.23.0 Series 从 numpy 数组创建,并指定索引值 >>> s1 = pd.Series(np.random.rand(4), index=['a', 'b', 'c', 'd']) >>> s1…
安装之后把之前infobright的数据迁移到新安装的infobright上. 1:挺掉相关的服务 2:scp 把旧数据拷到新安装的infobright上 3:修改/etc/my-ib.cnf的数据目录 4:修改/etc/init.d/mysqld-ib 的相应数据目录 5:启动服务: Option: KNLevel, value: 99. Option: LicenseFile, value: <unknown>. Option: LoaderMainHeapSize, value: 320…
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorch系列(二) - PyTorch数据读取 PyTorch系列(三) - PyTorch网络构建 PyTorch系列(四) - PyTorch网络设置 参考: PyTorch documentation PyTorch 码源 本文首先介绍了有关预处理包的源码,接着介绍了在数据处理中的具体应用: 其主要…
注:Pandas(Python Data Analysis Library) 是基于 NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.此外,Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. 相比较于 Numpy,Pandas 使用一个二维的数据结构 DataFrame 来表示表格式的数据, 可以存储混合的数据结构,同时使用 NaN 来表示缺失的数据,而不用像 Numpy 一样要手工处理缺失的数据,并且 Pandas 使用轴标签来表示行和列. P…
List R语言中各组件的名称叫做标签(tags),访问列表有3种方法: j$salary 通过标签名字访问,只要不引起歧义,可以只写出前几个字母. j[['sal']] 夹在两个中括号时引号里的标签名字要写全. j[[2]] 亦可以通过在列表中的位置访问. 这三种方法得到的都是对应组件内容的类型. 如果只加一个中括号,得到的是组件,类型为向量. 需要注意的是 [ ] 可以提取多个组件,但 [[ ]] 一次只能提取列表的一个组件内容. > j <- list(name = 'Joe', sal…
接着前天的豆瓣书单信息爬取,这一篇文章看一下利用pandas完成对数据的存储. 回想一下我们当时在最后得到了六个列表:img_urls, titles, ratings, authors, details. 我们如何对这些数据进行存储:让每一本书的每一个元素可以一一对应起来,形成第一本书的书名.作者等等在一起,下一本书的书名.作者在一起. 这里我们接触一个新的数据存储形式:pandas库里的DataFrame. pandas.DataFrame() DataFrame是一个表格型的数据结构,它含…
数据框是用于存储数据的二维结构,分为行和列,一行和一列的交叉位置是一个cell,该cell的位置是由行索引和列索引共同确定的.可以通过at/iat,或loc/iloc属性来访问数据框的元素,该属性后跟一个中括号:[row,col],中括号内 row表示行索引或行标签,col表示列索引或列标签.如果省略row, 那么row维度使用“:”代替,格式是 [ :, col] ,表示访问所有行的特定列:如果省略col ,格式是[row],表示访问特定行的所有列. 有以下数据框对象df,其数据和索引如下:…
1.python中数据框求每列的最大值和最小值 df.min() df.max()…
常用的数据存储介质是数据库和csv文件,pandas模块包含了相应的API对数据进行输入和输出: 对于格式化的平面文件:read_table() 对于csv文件:read_csv().to_csv() 对于SQL查询:read_sql.to_sql() 一,平面文件 把按照界定符分割的格式化文件读取到DataFrame中,使用read_table()函数来实现: pandas.read_table( filepath_or_buffer: Union[str, pathlib.Path], se…
该系列视频已经搬运至bilibili: 点击查看 欢迎来到Python for Finance教程系列的第4部分.在本教程中,我们将基于Adj Close列创建烛台/ OHLC图,这将允许我介绍重新采样和其他一些数据可视化概念. 名为烛台图的OHLC图表是一种将开盘价Open,最高价High,最低价Low和收盘价Close数据全部集中在一个很好的格式中的图表.另外,它使得漂亮的颜色,并记住我告诉你关于美观的图表? 在之前的教程中已经涉及到了这一点: import datetime as dt i…
Python3 Pandas的DataFrame数据的增.删.改.查 一.DataFrame数据准备 增.删.改.查的方法有很多很多种,这里只展示出常用的几种. 参数inplace默认为False,只能在生成的新数据块中实现编辑效果.当inplace=True时执行内部编辑,不返回任何值,原数据发生改变. import numpy as np import pandas as pd #测试数据. df = pd.DataFrame(data = [[']],index = [1,2,3],col…
数据过滤与排序------探索2012欧洲杯数据 相关数据见(github) 步骤1 - 导入pandas库 import pandas as pd 步骤2 - 数据集 path2 = "./data/Euro2012.csv" # Euro2012.csv 步骤3 - 将数据集命名为euro12 euro12 = pd.read_csv(path2) euro12.tail() 输出: 步骤4 选取 Goals 这一列 euro12.Goals # euro12['Goals'] 输…
1.创建数据框或读取外部csv文件 创建数据框数据 """ 设计数据 """ import pandas as pd data = {"A": [2,3,9], "B": [4,6,11], "C": [5,6,12], "D": [6,1,5]} index = ["X","Y","Z"] df = pd.…
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/sinat_38893241/article/details/80414977在<pandas数据框,统计某列数据与其他文件对应关系的个数>之后,我发觉简单版的元素个数统计问题没有说清楚,就在这里介绍两个统计pandas数据框里面列.行元素个数的方法: 代码如下: import pandas as pdimport numpy as np…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
上面一篇文章有记录pandas构造数据框的方式有二维数组,字典,嵌套的列表和元组等,本篇用于介绍通过外部数据读取的方式来构造数据框. python读取外部数据集的时候,这些数据集可能包含在文本文件(csv,txt),电子表格Excel和数据库中(Mysql,SQL server)等,那么如何来用pandas来实现这些 文件,表格和数据库的读取呢? 1.文本文件的读取 read_table函数介绍 函数原型: pd.read_table(filepath_or_buffer,sep='t',hea…
目录 折腾 解决方法 折腾 数据分析用惯了R,感觉pandas用起来就有点反人类了.今天用python的pandas处理数据时两个数据框硬是合并不起来. 我有两个数据框,列名是未知的,只能知道索引,以及哪两个索引是用做主键合并的.(别问我为啥列名未知,因为我是开发工具). 思路是这样的,找到主键列,重命名,再合并. df1.columns.values[args.marker1-1]="markerID" df2.columns.values[args.marker2-1]="…
本节介绍Series和DataFrame中的数据的基本手段 重新索引 pandas对象的一个重要方法就是reindex,作用是创建一个适应新索引的新对象 ''' Created on 2016-8-10 @author: xuzhengzhu ''' ''' Created on 2016-8-10 @author: xuzhengzhu ''' from pandas import * print "--------------obj result:-----------------"…
Pandas DataFrame数据的增.删.改.查 https://blog.csdn.net/zhangchuang601/article/details/79583551 #删除列 df_2 = df_1.drop(columns=['deptNo','routeNo']).copy() del df_2['trp_vehicleType'] #列名变更 df_3 = df_2.rename(columns={'dingdanNo':'订单号', 'createTime':'建单时间'})…
hadoop fs -put /home/wangxiao/data/ml/Affairs.csv /datafile/wangxiao/ hadoop fs -ls -R /datafiledrwxr-xr-x - wangxiao supergroup 0 2016-10-15 10:46 /datafile/wangxiao-rw-r--r-- 3 wangxiao supergroup 16755 2016-10-15 10:46 /datafile/wangxiao/Affairs.c…
This would allow chaining operations like: pd.read_csv('imdb.txt') .sort(columns='year') .filter(lambda x: x['year']>1990) # <---this is missing in Pandas .to_csv('filtered.csv') For current alternatives see: http://stackoverflow.com/questions/11869…
转自 :  http://blog.csdn.net/u011253874/article/details/43115447 <span style="font-size:14px;">#R语言备忘录三# #数组array和矩阵matrix.列表list.数据框dataframe #数组 #数组的重要属性就是dim,维数 #得到4*5的矩阵 z <- 1:12 dim(z) <- c(3,4) z #构建数组 x <- array(1:20, dim = …
``# 通过数据框列向(左右)合并 a = pd.DataFrame(X_train) b = pd.DataFrame(y_train) # 合并数据框(合并前需要将数据设置成DataFrame格式), 其中,如果axis=1,ignore_index将改变的是列上的索引(属性名) print(pd.concat([a,b], axis=1, ignore_index=False))…
将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy import pandas as pd from sqlalchemy import create_engine ##将数据写入mysql的数据库,但需要先通过sqlalchemy.create_engine建立连接,且字符编码设置为utf8,否则有些latin字符不能处理 yconnect = create_engine('mysql+mysqldb://root:password@localhost:330…