1. 摘要 随着Apache Hudi变得越来越流行,一个挑战就是用户如何将存量的历史表迁移到Apache Hudi,Apache Hudi维护了记录级别的元数据以便提供upserts和增量拉取的核心能力.为利用Hudi的upsert和增量拉取能力,用户需要重写整个数据集让其成为Hudi表.此RFC提供一个无需重写整张表的高效迁移机制. 2. 背景 为了更好的了解此RFC,读者需要了解一些Hudi基础知识 2.1 记录级别元数据 上图展示了Hudi中每条记录的组织结构,每条记录有5个Hudi元数…
1. 摘要 Hudi表允许多种类型操作,包括非常常用的upsert,当然为支持upsert,Hudi依赖索引机制来定位记录在哪些文件中. 当前,Hudi支持分区和非分区的数据集.分区数据集是将一组文件(数据)放在称为分区的桶中的数据集.一个Hudi数据集可能由N个分区和M个文件组成,这种组织结构也非常方便hive/presto/spark等引擎根据分区字段过滤以返回有限的数据量.而分区的值绝大多数情况下是从数据中得来,这个要求一旦一条记录映射到分区/桶,那么这个映射应该 a) 被Hudi知道:b…
1. 传统数据湖存在的问题与挑战 传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化.虽然能够在海量批处理场景中取得不错的效果,但依然存在如下现状问题: 问题一:不支持事务 由于传统大数据方案不支持事务,有可能会读到未写完成的数据,造成数据统计错误.为了规避该问题,通常控制读写任务顺序调用,在保证写任务完成后才能启动读任务.但并不是所有读任务都能够被调度系统约束住,在读取时仍存在该问题.…
1. 摘要 在本博客中,我们将讨论在构建流数据平台时如何利用 Hudi 的两个最令人难以置信的能力. 增量消费--每 30 分钟处理一次数据,并在我们的组织内构建每小时级别的OLAP平台 事件流的无限回放--利用 Hudi 的提交时间线在超级便宜的云对象存储(如 AWS S3)中存储 10 天的事件流(想象一个具有 10 天保留期的 kafka 主题) 具有部分记录更新的自定义 Hudi Payload 类 2. 当前状态 2.1 问题说明 对于大多数业务需要手动干预以通过查看 KPI 和数据趋…
1. 重点特性 1.1 Flink集成 自从Hudi 0.7.0版本支持Flink写入后,Hudi社区又进一步完善了Flink和Hudi的集成.包括重新设计性能更好.扩展性更好.基于Flink状态索引的写入Pipeline:支持Flink写入MOR表:Flink批量读取COW和MOR表:流式读取MOR表:同时支持了Hudi作为Source和Sink的Flink SQL Connector,在Hudi 0.8.0版本发布后,用户可以使用Flink1.11+体验上述所有新特性. 想了解更多Flink…
历经大约3个月时间,Apache Hudi 社区终于发布了0.5.1版本,这是Apache Hudi发布的第二个Apache版本,该版本中一些关键点如下 版本升级 将Spark版本从2.1.0升级到2.4.4 将Avro版本从1.7.7升级到1.8.2 将Parquet版本从1.8.1升级到1.10.1 将Kafka版本从0.8.2.1升级到2.0.0,这是由于将spark-streaming-kafka artifact从0.8_2.11升级到0.10_2.11/2.12间接升级 重要:Hud…
感谢 Apache Hudi contributor:王祥虎 翻译&供稿. 欢迎关注微信公众号:ApacheHudi 本文将介绍Apache Hudi的基本概念.设计以及总体基础架构. 1.简介 Apache Hudi(简称:Hudi)使得您能在hadoop兼容的存储之上存储大量数据,同时它还提供两种原语,使得除了经典的批处理之外,还可以在数据湖上进行流处理.这两种原语分别是: Update/Delete记录:Hudi使用细粒度的文件/记录级别索引来支持Update/Delete记录,同时还提供…
1. 下载连接 源代码下载:Apache Hudi 0.5.3 Source Release (asc, sha512) 0.5.3版本相关jar包地址:https://repository.apache.org/#nexus-search;quick~hudi 2. 迁移指南 这是一个bugfix版本,从0.5.2升级时不需要任何特殊的迁移步骤.如果要从早期版本"X"升级,请阅读"X"和0.5.3之间的每个后续版本的迁移指南. 0.5.3是Hudi毕业后的第一个版…
1. 下载信息 源码:Apache Hudi 0.6.0 Source Release (asc, sha512) 二进制Jar包:nexus 2. 迁移指南 如果您从0.5.3以前的版本迁移至0.6.0,请仔细核对每个版本的迁移指南: 0.6.0版本从基于list的rollback策略变更为了基于marker文件的rollback策略,为进行平稳迁移,会在hoodie.properties文件中配置一个新属性hoodie.table.version:无论何时使用Hudi表新版本,如1(从0.6…
感谢阿里云 Blink 团队Danny Chan的投稿及完善Flink与Hudi集成工作. 1. 背景 Apache Hudi 是目前最流行的数据湖解决方案之一,Data Lake Analytics 集成了 Hudi 服务高效的数据 MERGE(UPDATE/DELETE)场景:AWS 在 EMR 服务中 预安装 了 Apache Hudi,为用户提供高效的 record-level updates/deletes 和高效的数据查询管理:Uber 已经稳定运行 Apache Hudi 服务 4…
1. 摘要 本文演示了使用外部表集成 Vertica 和 Apache Hudi. 在演示中我们使用 Spark 上的 Apache Hudi 将数据摄取到 S3 中,并使用 Vertica 外部表访问这些数据. 2. Apache Hudi介绍 Apache Hudi 是一种变更数据捕获 (CDC) 工具,可在不同时间线将事务记录在表中. Hudi 代表 Hadoop Upserts Deletes and Incrementals,是一个开源框架. Hudi 提供 ACID 事务.可扩展的元…
与许多其他事务数据系统一样,索引一直是 Apache Hudi 不可或缺的一部分,并且与普通表格式抽象不同. 在这篇博客中,我们讨论了我们如何重新构想索引并在 Apache Hudi 0.11.0 版本中构建新的多模式索引,这是用于 Lakehouse 架构的首创高性能索引子系统,以优化查询和写入事务,尤其是对于大宽表而言. 1. 为什么在 Hudi 中使用多模态索引 索引被广泛应用于数据库系统中,例如关系数据库和数据仓库,以降低 I/O 成本并提高查询效率.类似于书末的索引页如何帮助您快速定位…
一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主要从事数据方面的工作,包括摄取标准化,数据湖原语等. 什么是数据湖?数据湖是一个集中式的存储,允许以任意规模存储结构化和非结构化数据.你可以存储原始数据,而不需要先转化为结构化的数据,基于数据湖之上可以运行多种类型的分析,如dashboard.大数据处理的可视化.实时分析.机器学习等. 接着看看对于构建PB…
作者:李少锋 文章目录: 一.CDC背景介绍 二.CDC数据入湖 三.Hudi核心设计 四.Hudi未来规划 1. CDC背景介绍 首先我们介绍什么是CDC?CDC的全称是Change data Capture,即变更数据捕获,它是数据库领域非常常见的技术,主要用于捕获数据库的一些变更,然后可以把变更数据发送到下游.它的应用比较广,可以做一些数据同步.数据分发和数据采集,还可以做ETL,今天主要分享的也是把DB数据通过CDC的方式ETL到数据湖. 对于CDC,业界主要有两种类型: 基于查询,客户…
Apache Hudi在阿里巴巴集团.EMIS Health,LinkNovate,Tathastu.AI,腾讯,Uber内使用,并且由Amazon AWS EMR和Google云平台支持,最近Amazon Athena支持了在Amazon S3上查询Apache Hudi数据集的能力,本博客将测试Athena查询S3上Hudi格式数据集. 1. 准备-Spark环境,S3 Bucket 需要使用Spark写入Hudi数据,登陆Amazon EMR并启动spark-shell: $ export…
1. 介绍 经过Apache Hudi项目委员会讨论及投票,向Udit Mehrotra.Gary Li.Raymond Xu.Pratyaksh Sharma 4人发出Committer邀请,4人均已接受邀请并顺利成为Committer,也使得Apache Hudi Committer成员在不断发展壮大. Udit Mehrotra是来自AWS EMR团队的一员,在去年9/10月份开始参与Apache Hudi社区,帮助Apache Hudi集成至EMR中,将Apache Hudi引入AWS生…
一篇由Apache Hudi PMC Bhavani Sudha Saktheeswaran和AWS Presto团队工程师Brandon Scheller分享Apache Hudi和Presto集成的一篇文章. 1. 概述 Apache Hudi 是一个快速迭代的数据湖存储系统,可以帮助企业构建和管理PB级数据湖,Hudi通过引入upserts.deletes和增量查询等原语将流式能力带入了批处理.这些特性使得统一服务层可提供更快.更新鲜的数据.Hudi表可存储在Hadoop兼容的分布式文件系…
感谢王祥虎@wangxianghu 投稿 Apache Hudi是由Uber开发并开源的数据湖框架,它于2019年1月进入Apache孵化器孵化,次年5月份顺利毕业晋升为Apache顶级项目.是当前最为热门的数据湖框架之一. 1. 为何要解耦 Hudi自诞生至今一直使用Spark作为其数据处理引擎.如果用户想使用Hudi作为其数据湖框架,就必须在其平台技术栈中引入Spark.放在几年前,使用Spark作为大数据处理引擎可以说是很平常甚至是理所当然的事.因为Spark既可以进行批处理也可以使用微批…
1. 引入 数据湖使组织能够在更短的时间内利用多个源的数据,而不同角色用户可以以不同的方式协作和分析数据,从而实现更好.更快的决策.Amazon Simple Storage Service(amazon S3)是针对结构化和非结构化数据的高性能对象存储服务,可以用来作为数据湖底层的存储服务. 然而许多用例,如从上游关系数据库执行变更数据捕获(CDC)到基于Amazon S3的数据湖,都需要在记录级别处理数据,执行诸如从数据集中插入.更新和删除单条记录的操作需要处理引擎读取所有对象(文件),进行…
T3出行的杨华和张永旭描述了他们数据湖架构的发展.该架构使用了众多开源技术,包括Apache Hudi和Alluxio.在本文中,您将看到我们如何使用Hudi和Alluxio将数据摄取时间缩短一半.此外,数据分析人员如何使用Presto.Hudi和Alluxio让查询速度提高了10倍.我们基于数据编排为数据管道的多个阶段(包括提取和分析)构建了数据湖. 1.T3出行数据湖总览 T3出行当前还处于业务扩张期,在构建数据湖之前不同的业务线,会选择不同的存储系统.传输工具以及处理框架,从而出现了严重的…
Hudi特性 数据湖处理非结构化数据.日志数据.结构化数据 支持较快upsert/delete, 可插入索引 Table Schema 小文件管理Compaction ACID语义保证,多版本保证 并具有回滚功能 savepoint 用户数据恢复的保存点 支持多种分析引擎 spark.hive.presto 编译Hudi git clone https://github.com/apache/hudi.git && cd hudi mvn clean package -DskipTests…
1. 介绍 经过Apache Hudi项目委员会讨论及投票,向WangXiangHu和LiWei 2人发出Committer邀请,2人均已接受邀请并顺利成为Committer,也使得Apache Hudi Committer成员在不断发展壮大. Wang XiangHu参与Apache Hudi社区贡献已经超过1年时间,完成了Apache Hudi和Apache Spark的解耦工作,并且实现了Flink写Hudi的第一个版本,同时也实现了Commit回调机制,在每次Commit完成后发送HTT…
1. 介绍 Apache Hudi是一个开源的数据湖框架,旨在简化增量数据处理和数据管道开发.借助Hudi可以在Amazon S3.Aliyun OSS数据湖中进行记录级别管理插入/更新/删除.AWS EMR集群已支持Hudi组件,并且可以与AWS Glue Data Catalog无缝集成.此特性可使得直接在Athena或Redshift Spectrum查询Hudi数据集. 对于企业使用AWS云的一种常见数据流如图1所示,即将数据实时复制到S3. 本篇文章将介绍如何使用Oracle Gold…
1. 引入 Apache Hudi是一个流行的开源的数据湖框架,Hudi提供的一个非常重要的特性是自动管理文件大小,而不用用户干预.大量的小文件将会导致很差的查询分析性能,因为查询引擎执行查询时需要进行太多次文件的打开/读取/关闭.在流式场景中不断摄取数据,如果不进行处理,会产生很多小文件. 2. 写入时 vs 写入后 一种常见的处理方法先写入很多小文件,然后再合并成大文件以解决由小文件引起的系统扩展性问题,但由于暴露太多小文件可能导致不能保证查询的SLA.实际上对于Hudi表,通过Hudi提供…
1. 概述 成千上万的客户在Amazon EMR上使用Apache Spark,Apache Hive,Apache HBase,Apache Flink,Apache Hudi和Presto运行大规模数据分析应用程序.Amazon EMR自动管理这些框架的配置和扩缩容,并通过优化的运行时提供更高性能,并支持各种Amazon Elastic Compute Cloud(Amazon EC2)实例类型和Amazon Elastic Kubernetes Service(Amazon EKS)集群.…
Apache Hudi是一个开源数据湖管理平台,用于简化增量数据处理和数据管道开发,该平台可以有效地管理业务需求,例如数据生命周期,并提高数据质量.Hudi的一些常见用例是记录级的插入.更新和删除.简化文件管理和近乎实时的数据访问以及简化的CDC数据管道开发. 本期SOFTWARE DAILY我们有幸采访到了Apache Hudi项目VP Vinoth Chandar.Vinoth是Uber Hudi项目的创建者,他继续在Apache Software Foundation领导Hudi的发展.在…
Hopsworks特征存储库统一了在线和批处理应用程序的特征访问而屏蔽了双数据库系统的复杂性.我们构建了一个可靠且高性能的服务,以将特征物化到在线特征存储库,不仅仅保证低延迟访问,而且还保证在服务时间可以访问最新鲜的特征值. 企业机器学习模型为指导产品用户交互提供了价值价值.通常这些 ML 模型应用于整个实体数据库,例如由唯一主键标识用户.离线应用程序的一个示例是预测客户终身价值(Customer Lifetime Value),其中可以定期(每晚.每周)分批预测,然后用于选择营销活动的目标受众…
来自字节跳动的管梓越同学一篇关于Apache Hudi在字节跳动推荐系统中EB级数据量实践的分享. 接下来将分为场景需求.设计选型.功能支持.性能调优.未来展望五部分介绍Hudi在字节跳动推荐系统中的实践. 在推荐系统中,我们在两个场景下使用数据湖 我们使用BigTable作为整个系统近线处理的数据存储,这是一个公司自研的组件TBase,提供了BigTable的语义和搜索推荐广告场景下一些需求的抽象,并屏蔽底层存储的差异.为了更好的理解,这里可以把它直接看做一个HBase.在这过程中为了能够服务…
徐昱 Apache Hudi Contributor:华米高级大数据开发工程师 巨东东 华米大数据开发工程师 1. 应用背景及痛点介绍 华米科技是一家基于云的健康服务提供商,拥有全球领先的智能可穿戴技术.在华米科技,数据建设主要围绕两类数据:设备数据和APP数据,这些数据存在延迟上传.更新频率高且广.可删除等特性,基于这些特性,前期数仓ETL主要采取历史全量+增量模式来每日更新数据.随着业务的持续发展,现有数仓基础架构已经难以较好适应数据量的不断增长,带来的显著问题就是成本的不断增长和产出效率的…
为了有机地发展业务,每个组织都在迅速采用分析. 在分析过程的帮助下,产品团队正在接收来自用户的反馈,并能够以更快的速度交付新功能. 通过分析提供的对用户的更深入了解,营销团队能够调整他们的活动以针对特定受众. 只有当我们能够大规模提供分析时,这一切才有可能. 对数据湖的需求 在 NoBrokercom,出于操作目的,事务数据存储在基于 SQL 的数据库中,事件数据存储在 No-SQL 数据库中. 这些应用程序 dB 未针对分析工作负载进行调整. 此外,为了更全面地了解客户和业务,通常需要跨交易和…