Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are notoriously difficult to configure and there are a lot of parameters that need to be set. On top of that, individual models can be very slow to train.…
w强化算法和数学,来迎接机器学习.神经网络. http://cs.stanford.edu/people/karpathy/convnetjs/ ConvNetJS is a Javascript library for training Deep Learning models (Neural Networks) entirely in your browser. Open a tab and you're training. No software requirements, no comp…
一.问题: keras中不能在每个epoch实时显示学习速率learning rate,从而方便调试,实际上也是为了调试解决这个问题:Deep Learning 31: 不同版本的keras,对同样的代码,得到不同结果的原因总结 二.解决方法 1.把下面代码加入keras文件callbacks.py中: class DisplayLearningRate(Callback): '''Display Learning rate . ''' def __init__(self): super(Dis…
目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adversarial Attacks.[J]. arXiv: Machine Learning, 2017. @article{madry2017towards, title={Towards Deep Learning Models Resistant to Adversarial Attacks.},…
People commonly tend to put much effort on hyperparameter tuning and training while using Tensoflow&Deep Learning. A realistic problem for TF is how to integrate models into industry: saving pre-trained models, restoring them when necessary, and doin…
一.疑问 这几天一直纠结于一个问题: 同样的代码,为什么在keras的0.3.3版本中,拟合得比较好,也没有过拟合,验证集准确率一直高于训练准确率. 但是在换到keras的1.2.0版本中的时候,就过拟合了,验证误差一直高于训练误差 二.答案 今天终于发现原因了,原来是这两个版本的keras的optimezer实现不一样,但是它们的默认参数是一样的,因为我代码中用的是adam方法优化,下面就以optimezer中的adam来举例说明: 1.下面是keras==0.3.3时,其中optimezer…
1.map(function, sequence[, sequence, ...])函数:返回一个list作用:map的作用是以参数序列中的每一个元素调用function函数,返回包含每次function函数返回值的list.例子:snrs, mods = map(lambda j: sorted(list(set(map(lambda x: x[j], Xd.keys())))), [1,0]) 上面这句话的意思是: Xd.keys()取出Xd中的键keys,形为('8PSK',-10),故s…
如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Generalization How can you get better performance from your deep learning model? It is one of the most common questions I get asked. It might be asked as: H…
Awesome Deep Learning  Table of Contents Free Online Books Courses Videos and Lectures Papers Tutorials Researchers WebSites Datasets Frameworks Miscellaneous Contributing Free Online Books Deep Learning by Yoshua Bengio, Ian Goodfellow and Aaron Cou…
Top Deep Learning Projects A list of popular github projects related to deep learning (ranked by stars). Last Update: 2016.08.09 Project Name Stars Description TensorFlow 29622              Computation using data flow graphs for scalable machine lear…
HOME ABOUT CONTACT SUBSCRIBE VIA RSS   DEEP LEARNING FOR ENTERPRISE Distributed Deep Learning, Part 1: An Introduction to Distributed Training of Neural Networks Oct 3, 2016 3:00:00 AM / by Alex Black and Vyacheslav Kokorin Tweet inShare27   This pos…
Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstitions cheat sheet Introduction to Deep Learning with Python How to implement a neural network How to build and run your first deep learning network Neur…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
Decision Boundaries for Deep Learning and other Machine Learning classifiers H2O, one of the leading deep learning framework in python, is now available in R. We will show how to get started with H2O, its working, plotting of decision boundaries and…
What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, My lab has been one of the three that started the deep learning approach, back in 2006, along with Hinton's... Answered Jan 20, 2016   Originally Ans…
Understand the key computations underlying deep learning, use them to build and train deep neural networks, and apply it to computer vision. 学习目标 See deep neural networks as successive blocks put one after each other Build and train a deep L-layer Ne…
Rolling in the Deep (Learning) Deep Learning has been getting a lot of press lately, and is one of the hottest the buzz terms in Tech these days. Just check out one of the few recent headlines from Forbes, MIT Tech Review and you will surely see thes…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber 写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从 1940 年开始讲起,到…
The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near July 27, 2015July 27, 2015 Tim Dettmers Deep Learning, NeuroscienceDeep Learning, dendritic spikes, high performance computing, neuroscience, singula…
Motivation: The lack of transparency of the deep  learning models creates key barriers to establishing trusts to the model or effectively troubleshooting classification errors Common methods on non-security applications: forward propagation / back pr…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that overfitting can be a serious problem, if the training dataset is not big enough. Sure it do…
Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspectives 2018-08-05 18:50:06 This blog is copied from: https://towardsdatascience.com/understanding-memory-in-deep-learning-systems-the-neuroscience-psycho…
Deep Learning Tutorials Deep Learning is a new area of Machine Learning research, which has been introduced with the objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence. See these course notes for a brief…
http://blog.revolutionanalytics.com/2016/08/deep-learning-part-1.html Deep Learning Part 1: Comparison of Symbolic Deep Learning Frameworks by Anusua Trivedi, Microsoft Data Scientist Background and Approach This blog series is based on my upcoming t…
by Jason Brownlee on December 20, 2017 in Better Deep Learning Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task. It is a popular approach in deep learning w…
Deep Learning Libraries by Language Tweet         Python Theano is a python library for defining and evaluating mathematical expressions with numerical arrays. It makes it easy to write deep learning algorithms in python. On the top of the Theano man…
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新.本文更新至2014-12-21 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep L…