原文地址 我对深度学习应用于物体检测的开山之作R-CNN的论文进行了主要部分的翻译工作,R-CNN通过引入CNN让物体检测的性能水平上升了一个档次,但该文的想法比较自然原始,估计作者在写作的过程中已经意识到这个问题,所以文中也对未来的改进提出了些许的想法,未来我将继续翻译SPPNet.fast-RCNN.faster-RCNN.mask-RCNN等一系列物体定位和语义分割领域的重要论文,主要作者都是Ross Girshick和Kaiming He. 用于精确物体定位和语义分割的丰富特征层次结构…
论文提出CoAE少样本目标检测算法,该算法使用non-local block来提取目标图片与查询图片间的对应特征,使得RPN网络能够准确的获取对应类别对象的位置,另外使用类似SE block的squeeze and co-excitation模块来根据查询图片加强对应的特征纬度,最后结合margin based ranking loss达到了state-of-the-art,论文创新点满满,值得一读 论文:One-Shot Object Detection with Co-Attention a…
基于比较的方法 先通过CNN得到目标特征,然后与参考目标的特征进行比较. 不同在于比较的方法不同而已. 基本概念 数据集Omniglot:50种alphabets(文字或者文明); alphabet中15-40 characters(字母); 每个字母有20drawers(20个不同的人写的). 每次迭代叫mini_batch或者epsiode. N-ways指的是有多个类别,N-shot是指于多少个目标进行比较取均值中的最高值作为最后的结果. 测试集与训练集中样本的类别不一样. cosine(…
摘要:人工智能在数据密集型应用中取得了成功,但它缺乏从有限的示例中学习的能力.为了解决这一问题,提出了少镜头学习(FSL).利用先验知识,可以快速地从有限监督经验的新任务中归纳出来.为了全面了解FSL,我们进行了一项调查研究.我们首先要澄清对FSL的正式定义.进而得出不可靠经验风险最小化是FSL的核心问题.基于如何利用先验知识来处理核心问题,我们将不同的FSL方法分为三类:数据利用先验知识来增加监督经验,模型利用先验知识来约束假设空间,算法利用先验知识改变对假设空间中最优假设参数的搜索.在这种统…
论文提出了新的少样本目标检测算法,创新点包括Attention-RPN.多关系检测器以及对比训练策略,另外还构建了包含1000类的少样本检测数据集FSOD,在FSOD上训练得到的论文模型能够直接迁移到新类别的检测中,不需要fine-tune   来源:晓飞的算法工程笔记 公众号 论文: Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector 论文地址:https://arxiv.org/abs/1908.0…
论文提出增量式少样本目标检测算法ONCE,与主流的少样本目标检测算法不太一样,目前很多性能高的方法大都基于比对的方式进行有目标的检测,并且需要大量的数据进行模型训练再应用到新类中,要检测所有的类别则需要全部进行比对,十分耗时.而论文是增量式添加类别到模型,以常规的推理形式直接检测,十分高效且数据需求十分低,虽然最终的性能有点难看,但是这个思路还是可以有很多工作可以补的   来源:晓飞的算法工程笔记 公众号 论文: Incremental Few-Shot Object Detection 论文地…
1. 介绍(Introduction) 问题: 由PLM编码得到的句子表示在方向上分布不均匀, 在向量空间中占据一个狭窄的锥形区域, 这在很大程度上限制了它们的表达能力. 已有的解决办法: 对比学习. 对于一个原句, 构造他的正例(语义相似的句子)和负例(语义不相似的句子), 拉近语义相近的句子来提高对齐性,同时让语义不同的句子远离来使向量空间中的句子更均匀. 正例通常用数据增强的策略来获得. 由于没有真实标注的数据, 负例一般在一个batch中随机抽样得到. 但这可能会导致抽样偏差, 影响句子…
原论文链接:https://gitee.com/shaoxuxu/DeepLearning_PaperNotes/blob/master/YOLOv1.pdf 笔记版论文链接:https://gitee.com/shaoxuxu/DeepLearning_PaperNotes/blob/master/YOLOv1-PaperNotes.pdf 你只需要看一次:统一的.实时的目标检测 1. 简介 (1)主要作者简介: Joseph Redmon:YOLOv1.YOLOv2.YOLOv3.DarkN…
paper链接:https://arxiv.org/pdf/1812.09953.pdf code链接:https://github.com/YangZhang4065/AdaptationSeg 摘要: 在过去的5年里面,卷积神经网络在语义分割领域大获全胜,语义分割是许多其他应用的核心任务之一,这其中包括无人驾驶.增强现实.然而,训练一个卷积神经网络需要大量的数据,而对于这些数据的收集和标注是极其困难的.计算机图形学领域的最新研究进展使得利用计算机生成的注释在接近真实照片的合成图像上训练CNN…
from:https://blog.csdn.net/u012931582/article/details/70314859 2017年04月21日 14:54:10 阅读数:4369 前言 在这里,先介绍几个概念,也是图像处理当中的最常见任务. 语义分割(semantic segmentation) 目标检测(object detection) 目标识别(object recognition) 实例分割(instance segmentation) 语义分割 首先需要了解一下什么是语义分割(s…